Method for the determination of HDL cholesterol by means of...

Chemistry: molecular biology and microbiology – Apparatus

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S286500, C435S286100, C435S287100

Reexamination Certificate

active

06171849

ABSTRACT:

The invention concerns a method for the quantitative determination of HDL (High Density Lipoprotein) in biological fluids and an agent suitable therefor.
Total cholesterol in blood, plasma or serum is one of the best known parameters for assessing the extend of risk of a coronary heart disease. However, the concentration of total cholesterol is only of limited value for the assessment of individual risk. The measurement of the cholesterol in the lipoproteins of low density (Low Density Lipoproteins=LDL) on the one hand and in the lipoproteins of high density (High Density Lipoproteins=HDL) on the other hand is more meaningful. Epidemiological and clinical studies have shown that there is a positive correlation between LDL cholesterol and coronary heart disease and a negative correlation between HDL cholesterol and coronary heart disease.
As a close approximation the determination of the HDL as well as the total cholesterol is sufficient for an assessment of risk. This course is preferably followed at present in diagnostic practice.
The other lipoprotein classes (LDL, VLDL, chylomicrons) which are present have to be separated in order to determine HDL cholesterol separately. The potential methods of separation are based on differences in the flotation densities (sequential flotation or equilibrium sedimentation, both in the ultracentrifuge), on different surface charges (electrophoreses on paper or agarose as carrier) or on differences in the apolipoproteins (immunochemical methods using specific antibodies). All these methods of separation are expensive, time-consuming and not established in routine laboratories. Precipitation reactions (in Monographs on Atherosclerosis, Vol. 11 (1982), Clackson, T. B., Kritchevsky, D., Pollak, O. J. eds; Lipoprotein Precipitation, Burstein, M., Legmann, P. and in Meth. in Enzymology, Vol. 129 (1986)) whose specificity depends on the particle dimension and the surface charge are cheap, relatively easy to handle and therefore widespread. Polymeric substances serve as precipitation reagents, and these are usually of a polyanionic nature. Polymers which are uncharged are also suitable. The polyanions usually need bivalent cations in order to develop their precipitating effect, while the uncharged polymers do not require them.
The experimental procedures and the concentrations which are used for the combined precipitation agents are designed to quantitatively precipitate all lipoproteins except HDL, to separate these precipitates from the liquid fraction of the sample in a suitable manner and subsequently to quantify the HDL in the liquid fraction of the sample by means of a cholesterol assay. For this, depending on how the test is carried out, a defined volume of precipitating agent (in suitable concentrations) is mixed intensively with a defined volume of the sample to be determined. It is the state of the art to allow a reaction time of at least 10 minutes for the precipitation and only after this time interval has elapsed to separate sedimented non-HDL lipoprotein precipitates and HDL remaining in the liquid fraction by centrifugation. The centrifugation step also needs some time.
This method is much too time-consuming for a routine test. In addition, centrifugation steps with subsequent separation of the supernatant need complicated additional equipment and a transfer step. The required pipetting procedure in which a defined amount of supernatant is taken is, in addition, a source of error which can lead to less precise measurements.
It is therefore the object of the invention to avoid the disadvantages of the state of the art and to provide a method for the separation of non-HDL lipoproteins from biological fluids which can be carried out more rapidly and without complicated additional equipment and which allows a more rapid and a simpler HDL cholesterol determination.
The object is achieved by a method for the separation of non-HDL lipoproteins from biological fluids, in which the biological fluid containing non-HDL lipoproteins is applied onto a carrier through which liquids can flow and which contains a precipitating agent for non-HDL lipoproteins. The invention also provides an agent for the separation of non-HDL lipoproteins and a rapid diagnostic agent which contains this agent.
It was found that the precipitation of the non-HDL lipoproteins proceeds particularly rapidly and specifically with conventional, well-known precipitating agents when these precipitating agents are applied in a finely dispersed form onto a carrier through which liquids can flow and the sample has to flow through this carrier. In general, the precipitation takes less than 1 min. Carriers through which liquids can flow are: papers, fabrics made of synthetic fibres such as e.g. polyester or polyamide or others, fabrics made of natural fibres such as cotton, silk or others or mixtures of these materials. In this connection, the structure of the fabrics can be monofilament or multifilament, multifilament forms being preferred.
The fibres which compose the carrier through which liquids can flow preferably have a fibre diameter from 3 to 100 &mgr;m, preferably 5 to 50 &mgr;m. The carrier has in particular a weight per unit area of 10 to 100 g/m
2
, preferably 10 to 50 g/m
2
at a thickness of 0.030 to 0.150 mm, and the ability to absorb water is 25 to 100 g/m
2
, preferably 40 to 70 g/m
2
at the thicknesses mentioned above.
Other suitable carriers are arrangements of glass fibres and mixtures of glass fibres with the fibres mentioned above through which liquids can flow—preferably in the form of fleece—and membranes in different forms. The membranes should have hydrophilic properties, a thickness between 20-250 &mgr;m, preferably 70-150 &mgr;m and pore sizes between 0.2-20 &mgr;m, preferably 5-15 &mgr;m.
The transport of liquid in these carriers is based on capillary forces.
The precipitating agents are preferably applied to the carrier by impregnating the carrier with a solution, emulsion or suspension of the precipitating agent and subsequent drying. In this process other useful additives such as pH buffer substances or detergents etc. can also be applied.
In this construction all chemical compounds are suitable as precipitating agents which can also be used in a “wet chemical” process for the precipitation of lipoproteins as long as they dissolve quickly enough in the sample solution. Certain polyanions in combination with bivalent cations are in particular known. Examples of these include combinations of phosphotungstic acid and magnesium chloride, of heparin and manganese (II) chloride or of dextran sulphate and magnesium chloride. It should be noted that, in principle, each polyanion can be combined with each of the three cations (Mg
2+
, or Mn
2+
, or Ca
2+
) which results, however, in slight differences in their capacity to precipitate lipoproteins (Burstein, 1986). The concentration of the chosen cation can be adapted accordingly in order to specifically precipitate the non-HDL lipoproteins. The molecular size of the polyanion used also influences the capacity to precipitate lipoproteins and should be taken into account when choosing the concentrations. The use of dextran sulphate with a molecular weight of 500000 and 50000, for example, is known. Both are also suitable for an application on carriers through which liquids can flow. Dextran sulphate with a molecular weight of 50000 combined with Mg
2+
is, however, preferred in which case Mg
2+
is preferably used in the form of magnesium acetate. In principle, magnesium sulphate, magnesium chloride and magnesium aspartate can also be used.
The concentration of the precipitating agent can be matched exactly to the volume of the sample to be examined.
The non-HDL lipoproteins are precipitated by bringing a sample into contact with the carrier through which liquids can flow and which contains the precipitating agent. The precipitation reaction is started thereby. The time interval during which the sample is in contact with the precipitating agent on the precipitating agen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for the determination of HDL cholesterol by means of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for the determination of HDL cholesterol by means of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for the determination of HDL cholesterol by means of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2482811

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.