Method for the automated generation of nucleic acid ligands

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S091100, C435S091200, C435S283100, C435S287200, C435S288300, C536S023100, C536S024300, C536S025400

Reexamination Certificate

active

06716580

ABSTRACT:

FIELD OF THE INVENTION
This invention is directed to a method for the generation of nucleic acid ligands having specific functions against target molecules using the SELEX process. The methods described herein enable nucleic acid ligands to be generated in dramatically shorter times and with much less operator intervention than was previously possible using prior art techniques. The invention includes a device capable of generating nucleic acid ligands with little or no operator intervention. The invention also includes reagents that can be used in any automated nucleic acid selection procedure to prevent the formation of high molecular weight amplification artifacts.
BACKGROUND OF THE INVENTION
The dogma for many years was that nucleic acids had primarily an informational role. Through a method known as Systematic Evolution of Ligands by EXponential enrichment, termed the SELEX process, it has become clear that nucleic acids have three dimensional structural diversity not unlike proteins. The SELEX process is a method for the in vitro evolution of nucleic acid molecules with highly specific binding to target molecules and is described in U.S. patent application Ser. No. 07/536,428, filed Jun. 11, 1990, entitled “Systematic Evolution of Ligands by EXponential Enrichment,” now abandoned, U.S. Pat. No. 5,475,096 entitled “Nucleic Acid Ligands”, and U.S. Pat. No. 5,270,163 (see also WO 91/19813) entitled “Nucleic Acid Ligands” each of which is specifically incorporated by reference herein. Each of these patents and applications, collectively referred to herein as the SELEX Patent Applications, describes a fundamentally novel method for making a nucleic acid ligand to any desired target molecule. The SELEX process provides a class of products which are referred to as nucleic acid ligands or aptamers, each having a unique sequence, and which has the property of binding specifically to a desired target compound or molecule. Each SELEX-identified nucleic acid ligand is a specific ligand of a given target compound or molecule.
The SELEX process is based on the unique insight that nucleic acids have sufficient capacity for forming a variety of two- and three-dimensional structures and sufficient chemical versatility available within their monomers to act as ligands (form specific binding pairs) with virtually any chemical compound, whether monomeric or polymeric. Molecules of any size or composition can serve as targets. The SELEX method applied to the application of high affinity binding involves selection from a mixture of candidate oligonucleotides and step-wise iterations of binding, partitioning and amplification, using the same general selection scheme, to achieve virtually any desired criterion of binding affinity and selectivity. Starting from a mixture of nucleic acids, preferably comprising a segment of randomized sequence, the SELEX method includes steps of contacting the mixture with the target under conditions favorable for binding, partitioning unbound nucleic acids from those nucleic acids which have bound specifically to target molecules, dissociating the nucleic acid-target complexes, amplifying the nucleic acids dissociated from the nucleic acid-target complexes to yield a ligand-enriched mixture of nucleic acids, then reiterating the steps of binding, partitioning, dissociating and amplifying through as many cycles as desired to yield highly specific high affinity nucleic acid ligands to the target molecule.
It has been recognized by the present inventors that the SELEX method demonstrates that nucleic acids as chemical compounds can form a wide array of shapes, sizes and configurations, and are capable of a far broader repertoire of binding and other functions than those displayed by nucleic acids in biological systems. The present inventors have recognized that SELEX or SELEX-like processes could be used to identify nucleic acids which can facilitate any chosen reaction in a manner similar to that in which nucleic acid ligands can be identified for any given target. In theory, within a candidate mixture of approximately 10
13
to 10
18
nucleic acids, the present inventors postulate that at least one nucleic acid exists with the appropriate shape to facilitate each of a broad variety of physical and chemical interactions.
The basic SELEX method has been modified to achieve a number of specific objectives. For example, U.S. patent application Ser. No. 07/960,093, filed Oct. 14, 1992, now abandoned, and U.S. Pat. No. 5,707,796, both entitled “Method for Selecting Nucleic Acids on the Basis of Structure,” describe the use of the SELEX process in conjunction with gel electrophoresis to select nucleic acid molecules with specific structural characteristics, such as bent DNA. U.S. patent application Ser. No. 08/123,935, filed Sep. 17, 1993, and U.S. patent application Ser. No. 08/443,959 filed May 18, 1995, both entitled “Photoselection of Nucleic Acid Ligands,” and both now abandoned, and U.S. Pat. Nos. 5,763,177, U.S. patent application Ser. No. 6,001,577, WO 95/08003, U.S. Pat. No. 6,291,184, U.S. Pat. No. 6,458,539, and U.S. patent application Ser. No. 09/723,718, filed Nov. 28, 2000, each of which is entitled “Systematic Evolution of Nucleic Acid Ligands by Exponential Enrichment: Photoselection of Nucleic Acid Ligands and Solution SELEX,” all describe a SELEX process-based method for selecting nucleic acid ligands containing photoreactive groups capable of binding and/or photocrosslinking to and/or photoinactivating a target molecule. The resulting nucleic acid ligands are often referred to as “photoaptamers.” These patents and patent applications are referred to in this application collectively as “the photoSELEX process applications.” In the photoSELEX process variation of the SELEX process, a modified nucleotide activated by absorption of light is incorporated in place of a native base in either RNA- or in ssDNA-randomized oligonucleotide libraries.
U.S. Pat. No. 5,580,737 entitled “High-Affinity Nucleic Acid Ligands That Discriminate Between Theophylline and Caffeine,” describes a method for identifying highly specific nucleic acid ligands able to discriminate between closely related molecules, termed Counter-SELEX. U.S. Pat. No. 5,567,588 entitled “Systematic Evolution of Ligands by EXponential Enrichment: Solution SELEX,” describes a SELEX-based method which achieves highly efficient partitioning between oligonucleotides having high and low affinity for a target molecule. U.S. Pat. No. 5,496,938 entitled “Nucleic Acid Ligands to HIV-RT and HIV-1 Rev,” describes methods for obtaining improved nucleic acid ligands after SELEX has been performed. U.S. Pat. No. 5,705,337 entitled “Systematic Evolution of Ligands by Exponential Enrichment: Chemi-SELEX,” describes methods for covalently linking a ligand to its target.
The SELEX method encompasses the identification of high-affinity nucleic acid ligands containing modified nucleotides conferring improved characteristics on the ligand, such as improved in vivo stability or improved delivery characteristics. Examples of such modifications include chemical substitutions at the ribose and/or phosphate and/or base positions. SELEX process-identified nucleic acid ligands containing modified nucleotides are described in U.S. Pat. No. 5,660,985 entitled “High Affinity Nucleic Acid Ligands Containing Modified Nucleotides,” that describes oligonucleotides containing nucleotide derivatives chemically modified at the 5- and 2′-positions of pyrimidines. U.S. Pat. No. 5,580,737, supra, describes highly specific nucleic acid ligands containing one or more nucleotides modified with 2′-amino (2′-NH
2
), 2′-fluoro (2′-F), and/or 2′-O-methyl (2′-OMe). U.S. patent application Ser. No. 08/264,029, filed Jun. 22, 1994, entitled “Novel Method of Preparation of Known and Novel 2′ Modified Nucleosides by Intramolecular Nucleophilic Displacement,” describes oligonucleotides containing various 2′-modified pyrimidines.
The SELEX method encompasses combining selected oligonucleotides with o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for the automated generation of nucleic acid ligands does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for the automated generation of nucleic acid ligands, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for the automated generation of nucleic acid ligands will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3201752

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.