Method for the analysis and evaluation of at least...

Computer graphics processing and selective visual display system – Computer graphics processing – Three-dimension

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06720960

ABSTRACT:

CROSS REFERENCE TO RELATED APPLICATIONS
This invention claims priority of the German patent application 100 45 873.4 which is incorporated by reference herein.
FIELD OF THE INVENTION
The present invention concerns a method for the analysis and evaluation of at least three-dimensional specimen data that are preferably detected with a confocal scanning microscope.
BACKGROUND OF THE INVENTION
Methods of the generic type have been known for some time, and are used principally in the context of devices that can detect three- or multidimensional specimen data. Such devices can be, for example, computerized tomographs, magnetic resonance tomographs, or confocal scanning microscopes. With confocal scanning microscopes in particular, multi-dimensional specimen data can be detected. This can involve, for example, a time series of a detected three-dimensional specimen, i.e. the same specimen is detected three-dimensionally at respective predefined times, yielding a four-dimensional specimen data set (X, Y, Z, t). A further example of the existence of a multidimensional specimen data set is the detection of a three-dimensional fluorescent specimen using a confocal scanning microscope, in which context a separate detection channel can be provided for each fluorescent dye that is used. The detected specimen data set consequently has four dimensions (X, Y, Z, &lgr;).
The analysis and evaluation of multi-dimensional specimen data sets is problematic, however, in particular because of the large data volume. It is not readily possible to visualize specimen data sets whose dimension is greater than or equal to 3. A number of different visualization methods exist for this purpose. One cited purely by way of example is EP 0 908 849, which discloses a method and an apparatus with which, in a three-dimensional data set, a viewing point and a viewing direction proceeding from that viewing point can be defined. The three-dimensional specimen data set is then projected onto a plane that is perpendicular to the viewing direction, using the method of central projection with the viewing point as origin. The projected image is displayed on a monitor in the form of a pseudo-3D depiction.
The known analysis and evaluation methods are, however, problematic in many respects. Often the definition of the input values necessary for the respective method—for example points, lines, or displacement directions—needs to be performed by way of an interaction between user and computer. Often, however, this interaction requires extensive user training or a very considerable familiarization time, since following an interactive parameter input, the subsequent method steps often demand considerable processing time. If the result thereof does not meet expectations, another interactive input of the method parameters is necessary, after which the processing steps once again require processing time. For many applications, moreover, analysis and evaluation of the detected specimen does not require the utilization of a projection or some other complex processing method.
SUMMARY OF THE INVENTION
It is therefore the object of the present invention to describe and develop a method of the generic type with which, by unequivocal input of the necessary method parameters, it is possible to extract and output a portion of the detected specimen data, on the basis of which the three- or multi-dimensional specimen data can be analyzed and evaluated.
The method according to the present invention is achieved by the steps of:
detecting specimen data with a confocal scanning microscope and organizing the specimen data in a specimen data set,
defining at least two points of the specimen data set of the detected specimen data;
extracting at least one plane extending through the defined points from the specimen data set;
and graphically outputting the plane on an output unit.
Definition of the points preferably represents an input of the method parameters within the meaning of the object cited initially.
What has been recognized according to the present invention is firstly that the definition or input of points of a specimen data set is possible after only a very short training period. In particular, the accuracy of the definition of a point is greater than that of the user interfaces in which scroll bars or arrow buttons must be modified and the subsequent method steps are performed (in time-consuming fashion), and the result is output, only after a modification to the corresponding input means. It has furthermore been recognized that the output of a single plane or individual planes of the specimen data sets is often sufficient for the analysis and evaluation of multi-dimensional specimen data, so that complex process steps in the form of calculations and output steps can advantageously be omitted or at least minimized. The definition of at least two points of the specimen data set defines a family of planes that is output on an output unit. A storage medium, a monitor, and/or a printer/plotter is provided as the output unit. Output over a network, e.g. the Internet, is also conceivable. Output on a monitor or printer/plotter is performed graphically.
If a multi-dimensional specimen data set is present, coordinate values are determined or defined for all but three coordinates of the specimen data set. The result is to define a three-dimensional partial data set, provided for further processing, of the multi-dimensional specimen data set. The three coordinates whose values were not determined or defined span this partial data set. For example, a three-dimensional data set of a specimen could be acquired at each of twenty different points in time using a confocal scanning microscope. This four-dimensional specimen data set—comprising the coordinates X, Y, Z, and t—would be reduced, by the definition of a specific time coordinate (e.g. the acquisition time corresponding to the tenth specimen data set), to a three-dimensional partial data set for further processing. The partial data set that is further processed is thus spanned by the three undetermined coordinates (X, Y, and Z).
In a first variant, provision is made for three points of the detected specimen data to be determined. This determination is accomplished in a three-dimensional specimen data set. Determination of the points could be accomplished by numerical input or by mouse clicking, i.e. very generally using means for marking or selecting points. An automatic determination would also be conceivable; for example, the three points could be the result of a segmentation process or a specimen recognition process.
Definition of the points is preferably accomplished on the basis of three mutually orthogonal section planes. These section planes visualize individual two-dimensional image sections through the three-dimensional specimen data set, in which context respective planes parallel to the XY plane, XZ plane, and YZ plane are usually displayed simultaneously on a monitor. The three section planes possess one common point, which can lie in the specimen to be analyzed. It would then be possible, by mouse clicking, to define in the displayed section planes three points for extraction of a plane from the specimen data set; it is not necessary to define a point in each displayed section plane.
The plane extending through three points is output on an output unit, i.e. for example on a monitor or color printer.
In a second variant, provision is made for only two points to be determined. This could be useful for analysis and evaluation of the detected specimen if the specimen has an elongated or cylindrical shape. The first point could accordingly be defined at one end of the specimen, and the second point at the other end of the specimen. The two defined points define a rotation axis. The planes that contain the rotation axis are then output. The planes are output in a sequence that forms a greater intersection angle each time with reference to the plane that was output first. For example, the plane that contains the rotation axis and e.g. the X axis could be output first. The next plane to be o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for the analysis and evaluation of at least... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for the analysis and evaluation of at least..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for the analysis and evaluation of at least... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3202333

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.