Measuring and testing – Vibration – By mechanical waves
Reexamination Certificate
2003-04-15
2004-09-28
Chapman, John E. (Department: 2856)
Measuring and testing
Vibration
By mechanical waves
C073S600000
Reexamination Certificate
active
06796182
ABSTRACT:
The present invention relates to a method for the non-destructive testing of welding joints between sheets of metal and bolts welded onto the same, in particular stud bolts welded on using the stroke ignition method. Such bolts having various geometrical shapes which are welded on using the fast-welding method are used in a wide variety of applications, e.g. as fastening elements for body-making in the automobile industry. Fast-welding methods are mostly automatic and are widely used in industry. Up to now, quality testing of the weld joints produced automatically is still problematic. Such tests are necessary in many cases as safety-relevant joints are often implemented using welded-on stud bolts.
Until now, the only type of testing methods implemented in practice are purely mechanical ones. These are based on determining mechanical characteristics of the weld joints to be tested, in the present case especially the tear-off, bending or turn-off momentum of the welded-on bolt. However, one of the problems in connection with the mechanical testing methods is that an earlier damage and thus a possible later fault of the weld joint tested cannot be excluded.
Known non-destructive testing methods relying on the use of ultrasonic sound are essentially based on detecting the attenuation of ultrasonic signals spreading in the direction of the longitudinal axis of the welded-on bolt during the reflection on and/or the transmission through the weld pool of the weld joint to be tested. Until now, only longitudinal waves were used in such tests. Such testing methods were implemented by means of test heads emitting sound waves in a perpendicular direction in single-head operation. Because of the generally uneven surface of the bolt head, the longitudinal waves were introduced from the rear side of the even sheet metal surface. Thus, pulse-reflection methods operating in the direction of the bolt's longitudinal axis were used.
Such testing methods based on ultrasonic sound have not yet reached a degree of reliability justifying their use for testing weld joints between bolts and sheet metal as a standard. These ultrasonic sound testing methods exhibited an unsatisfactory correlation between the results of the ultrasonic test and those of the mechanical testing methods.
This object is achieved by a method comprising the features specified in claim
1
and by an apparatus comprising the features specified in claim
10
.
The basic idea of the method according to the present invention is to distinguish intact weld joints from faulty weld joints on the basis of the weld pool diameter. A weld pool represents that part of a sheet metal in which the material structure has changed due to the welding operation in comparison to the non-rolled sheet metal. Thus, the method according to the present invention is based on the detection of the weld pool diameter. The most decisive criterion is whether a minimum diameter for a predetermined weld joint has been achieved or not.
Of course, this minimum diameter of the weld pool depends upon the specific parameters of the weld joint to be tested. The factors requiring particular consideration include the geometry of the welded-on stud bolt, the geometry of the sheet metal, the material characteristics of the stud bolt and the sheet metal as well as the specific characteristics of the welding method used. With respect to a predetermined combination of stud bolt and sheet metal and a defined welding method, it is possible, for example within the framework of preliminary tests, to determine the diameter of the weld pool using the non-destructive testing method according to the present invention. Thereafter, the known mechanical testing methods may be used to determine from which diameter of the weld pool the weld joints can be regarded as intact. In this way, a standard minimum radius of the weld pool can be determined.
The testing method according to the present invention used for preferably automated testing of such weld joints, is essentially based on examining the weld joint to be tested to find out whether the standard minimum radius of the weld pool determined during the preliminary tests has been reached in the actual case or not. In this way, a secure classification of the weld joint to be tested is possible.
The method according to the present invention is based on a directed spreading of ultrasonic signals in the sheet metal onto which a stud bolt has been welded. Here, the direction of sound propagation of the ultrasonic signals comprises at least one component directed towards the extension direction of the sheet metal. Thus, the ultrasonic signals can be made to penetrate into the sheet metal at a first point A and coupled out of the sheet metal at a second point B with the points A and B being spaced apart from each other. The ultrasonic penetration is performed by an ultrasonic source sending sound signals in an oblique direction into the coupling-in point A. The ultrasonic signals are coupled out at the coupling-out point B using an ultrasonic receiver being specifically sensitive for ultrasonic signals being obliquely incident from the direction of the coupling-in point A. In particular, the ultrasonic receiver may have essentially the same ultrasonic acoustic characteristics as the ultrasonic transmitter. In general, the acoustic path extending from the coupling-In point A to the coupling-out point B tends to comprise a plurality of reflections at the surfaces of the sheet metal. Preferably, the distance between the coupling-in point A and the coupling-out point B Is chosen so that, in the light of the given material characteristics of the sheet metal and the ultrasonic parameters, the undisturbed acoustic path of the ultrasonic signals penetrating into the sheet metal at the coupling-In point A essentially hits the coupling-out point B.
For testing a weld joint using the method according to the present invention, the coupling-in point A and the coupling-out point B are placed on the sheet metal so that the connecting line between both points A and B passes at least through the edge area of the weld joint to be tested. The minimum distance of the connecting line between both points from the centre of the contact area is indicated by the reference sign d. By displacing in parallel the connecting line between A and B, it is now possible in principle for the ultrasonic signals to scan the entire weld pool of the weld joint to be tested.
The method of the present invention is based on the fact that the weld pool of the weld joint to be tested due to its modified material structure has other ultrasonic acoustic characteristics than the material structure of the sheet metal which in general has been manufactured in a rolling process. These modified ultrasonic acoustic characteristics of the weld pool cause a reduced transmission between the coupling-in point A and the coupling-out point B if the welded structure were located between these two points, i.e. if the path of the ultrasonic signals passes through the weld pool.
When the intensity of the ultrasonic signals transmitted from point A to point B is recorded location-related as a function of the distance d, it is possible to determine the size of the weld pool from the shape of the resulting graph. The location-related recording of the intensity of the ultrasonic signals can be used in particular within the framework of the preliminary tests described for determining the diameter of weld joints classified as intact. In this case, it is preferred with regard to a given weld joint to determine a standard minimum radius of the weld pool of the weld joint to be tested and to classify this weld joint to be tested as intact if said minimum radius is exceeded. Should the standard minimum radius not be reached, the respective weld joint to be tested will be classified as faulty. During the practical test, it is possible for example to use a standardised signal level on the flange of the resulting graph of ultrasonic intensity.
In a first embodiment of the method according to the present invention,
Schappacher Walter
Wagner Joachim
Agfa NDT GmbH
Akerman & Senterfitt
Chapman John E.
LandOfFree
Method for testing studs and corresponding device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for testing studs and corresponding device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for testing studs and corresponding device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3185138