Education and demonstration – Anatomy – physiology – therapeutic treatment – or surgery...
Reexamination Certificate
2000-06-30
2003-12-30
O'Neill, Michael (Department: 3713)
Education and demonstration
Anatomy, physiology, therapeutic treatment, or surgery...
Reexamination Certificate
active
06669482
ABSTRACT:
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT Not applicable.
BACKGROUND OF THE INVENTION
The invention relates to a method for improving a radiologists or other interpreters skills in interpreting radiologic images whether film images viewed on a multiviewer or the like, or digital images viewed on a computer screen. The method includes use of standardized terminology during interpretation of radiologic studies to characterize image findings. The method tracks an interpreter's use of this terminology in addition to their assessments and conclusions concerning the presence or absence of biological processes that cause the image finds and tracks evidence for the presence or absence of these biological processes. The method further employs repetitive feedback to interpreters concerning their diagnostic accuracy and use of standardized feature descriptors to refine their understanding of the appropriate use of the terminology.
Variability of Interpretations in Radiology
Variability in the interpretation of radiological exams is a known phenomenon, and has recently received considerable attention in the area of breast imaging. For example, recent research has demonstrated marked variability in radiologists' interpretation of mammograms (Elmore, 1995 & 1998; Beam, 1996). The authors of these studies have noted the need for efforts to improve accuracy and reduce variability in the interpretation of mammograms. Unlike analytic tests (e.g. serum electrolytes), the interpretation of radiologic tests involves a significant amount of subjective judgment. This phenomenon has been discussed in numerous publications (Elmore, 1995; Beam, 1996), and includes both (a) failures in detection (i.e., failure to identify an abnormality), and (b) failures of characterization (e.g., failure to properly classify an abnormality as benign or malignant once its features have been assessed). The method of the present invention addresses this second source of variability, focusing on a method for improving diagnostic accuracy and reducing the variability of an interpreters' characterization of abnormalities seen on radiologic examinations.
Standardized Reporting for Radiologic Examinations
Breast imaging is one of the first subspecialties of radiology to embrace standardized reporting. Standardized reporting uses defined terminology and report formats to improve consistency and reduce confusion in the reporting of image findings and abnormalities. Mammography is the first area of breast imaging in which widespread use of standardized reporting is becoming common practice. This results, in part, from Federal regulations which went into effect Apr. 28, 1999, requiring all mammographic facilities in the United States to use standardized assessment and recommendation terminology at the end of mammographic reports. The assessment and recommendation language is nearly identical to that used in the American College of Radiology's (ACR's) Breast Imaging and Reporting Data System (BI-RADS). BI-RADS was developed for standardized mammography reporting and was first released in 1993 (Kopans, 1993). The ACR's promotion of BI-RADS helped influence the Food and Drug Administration's (FDA's) requirement that standardized assessment and recommendation terminology appear at the end of mammographic reports. The promotion of BI-RADS has also prompted development of standardized terminology for other imaging modalities. For example, standardized reporting terminology for breast ultrasound is being pursued by several groups (
ACR Bulletin
1999; Hawkins, 1998).
Image Feature Assessment Using Standardized Terminology
Standardized reporting formats include lexicons of feature descriptors used to categorize image findings and abnormalities (Kopans, 1993; D'Orsi, 1995 & 1998; Hawkins, 1998). In the case of BI-RADS, D'Orsi, et al (1993) have attempted to group BI-RADS lexicon features according to the probability of their association with malignancy. However, it is only recently that the association of BI-RADS features with benign and malignant breast disease has been empirically evaluated (Lieberman, 1998). New and/or altered descriptors that better discriminate between benign and malignant breast disease will be incorporated into BI-RADS as they are discovered. As these type of improvements are made in BI-RADS, proper use of the feature descriptors will help guide radiologists to more accurate characterization of mammographic findings. The same is anticipated for feature descriptors of other standardized reporting systems.
Feature-base Training for Reducing Variability in Feature Assessment
Use of standardized feature descriptors in the interpretation of radiologic studies is subject to variability (Baker, 1996; Shile, 1997; Berg, 1997; Orel, 1997). Training radiologists to appreciate the range of presentations of standardized features can reduce observer variability in the use of these descriptor terms. However, it is important to now provide a method for training radiologists to understand the relationship between standardized feature descriptors and pathological entities seen on radiological exams. The current invention is directed to such a method.
Practice Audits for Improving Diagnostic Accuracy in Radiologic Interpretation
Practice audits in breast imaging have been used for a number of years to improve the skills of interpreters. Hence the Agency for Health Care Policy and Research (AHCPR) has strongly encouraged them (Basset, 1994), and the AHCPR audit recommendations became Federal Law in 1999 (Federal Register, 1998). Breast imaging facilities are now required to track mammography assessments and recommendations according to structured assessment and recommendation categories. This aides practice in calculating profiles such as true positive, true negative, false positive and false negative rates, as well as sensitivity, specificity and positive predictive values. Audits containing this information have been shown to be a powerful educational tool for refining radiologist's interpretive skills (Bird, 1992; Sickles, 1990; Spring, 1991; Linver 1992). However, this type of audit information only provides radiologists with a general overview of the strengths and weaknesses of their interpretive skills. For example, these audits enable radiologists to identify poor specificity in mammographic interpretations. They do not provide radiologists with mechanisms to examine the relationship between features of image findings and diagnostic decision making. The method of the current invention provides this type of mechanism, and like a practice audit, is a powerful educational tool.
BRIEF SUMMARY OF THE INVENTION
The primary object of the present invention is a training method to improve the accuracy and reduce the variability of anyone who reads and interprets radiologic examinations. The method tracks the reader's (image interpreter's) diagnostic accuracy and use of standardized feature descriptors during interpretation of radiologic examinations. The method is not only useful for training readers how to appropriately use descriptors of a standardized reporting system, but it also leads to a detailed understanding of the association of findings with specific types of pathology (e.g., benign and malignant disease). As described herein, the method utilizes repetitive feedback concerning an interpreter's diagnostic accuracy and use of standardized terminology during exam interpretation. It improves accuracy of interpretations and reduces variability in the use of standardized terminology.
It is a further object of the invention to document a radiologist's diagnostic accuracy and use of standardized feature descriptors for review and training. To achieve this, the radiologist is asked to describe image findings using standardized terminology during exam interpretation. For each image finding, the radiologist is also asked to provide their assessment concerning the presence of a biological process that has caused the finding. These assessmen
Brocketti Julie
O'Neill Michael
Polster Lieder Woodruff & Lucchesi L.C.
LandOfFree
Method for teaching interpretative skills in radiology with... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for teaching interpretative skills in radiology with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for teaching interpretative skills in radiology with... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3140064