Method for targeted delivery of nucleic acids

Chemistry: molecular biology and microbiology – Process of mutation – cell fusion – or genetic modification – Introduction of a polynucleotide molecule into or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S468000, C435S325000, C435S320100, C530S387100, C530S387300, C514S04400A, C536S023100

Reexamination Certificate

active

06764853

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed to a method of in vivo and ex vivo gene delivery, for a variety of cells. More specifically, it relates to a novel carrier system and method for targeted delivery of nucleic acids to mammalian cells. More specifically, the present invention relates to carrier systems comprising single-chain polypeptide binding molecules having a basic amino acid rich region, such as an oligo-lysine or an oligo-arginine region, and having the three dimensional folding and, thus, the binding ability and specificity, of the variable region of an antibody. Such preparations of modified single chain polypeptide binding molecules also have ability to bind nucleic acids at the basic amino acid rich region. These properties of the modified single chain polypeptide binding molecules make them very useful in a variety of therapeutic applications including gene therapy. The invention also relates to multivalent antigen-binding molecules having basic amino acid rich regions. Compositions of, genetic constructions for, methods of use, and methods for producing such basic amino acid rich region containing antigen-binding proteins are disclosed.
2. Background Art
Substantial attention has been given to the promise of gene therapy in recent years. This term has been used to describe a wide variety of methods using recombinant biotechnology techniques to deliver a variety of different materials to a cell. Such methods include, for example, the delivery of a gene, antisense RNA, a cytotoxic agent, etc., by a vector to a mammalian cell, preferably a human cell either in vivo or ex vivo. Most of the initial work has focused on the use of retroviral vectors to transform these cells. This focus has resulted from the ability of retroviruses to infect cells with high efficiency.
However, numerous difficulties with retroviruses have been reported. For example, problems have been encountered in infecting certain cell types. Retroviruses typically enter cells via receptors and if such receptors are not present on the cell, or not present in large numbers, then infection is not possible or efficient. These viruses are also relatively labile in comparison to other viruses. Outbreaks of wild-type virus from recombinant virus-producing cell lines have also been reported with the vectors themselves causing disease. Moreover, these viruses are only expressed in dividing cells.
In addition, retroviral-mediated gene transfer methods typically result in stable transformation of the target cells. Although this may be regarded as advantageous, the stable transformation of a patient's somatic cells makes it difficult to reverse the treatment regimen if undesirable side effects occur. Moreover, there is the concern that genetic transformation might lead to malignant transformation of the cell.
Other methods of delivering genetic material to cells in vivo and ex vivo include the use of liposome entrapped DNA. Liposomes are small membrane-enclosed spheres that have been formed with the appropriate DNA entrapped within it. However, this system also has inherent problems. It is difficult to control the size of the liposome and, hence the uniformity of delivery to individual cells. Additionally, it is difficult to prevent leakage of the contents of the liposomes and as with other techniques, there has been difficulty in directing cell-type specificity.
Antibodies are proteins generated by the immune system to provide a specific molecule capable of complexing with an invading molecule, termed an antigen. Natural antibodies have two identical antigen-binding sites, both of which are specific to a particular antigen. The antibody molecule “recognizes” the antigen by complexing its antigen-binding sites with areas of the antigen termed epitopes. The epitopes fit into the conformational architecture of the antigen-binding sites of the antibody, enabling the antibody to bind to the antigen.
The antibody molecule is composed of two identical heavy and two identical light polypeptide chains, held together by interchain disulfide bonds. The remainder of this discussion on antibodies will refer only to one pair of light/heavy chains, as each light/heavy pair is identical. Each individual light and heavy chain folds into regions of approximately 110 amino acids, assuming a conserved three-dimensional conformation. The light chain comprises one variable region (V
L
) and one constant region (C
L
), while the heavy chain comprises one variable region (V
H
) and three constant regions (C
H
1, C
H
2 and C
H
3). Pairs of regions associate to form discrete structures. In particular, the light and heavy chain variable regions associate to form an “Fv” area which contains the antigen-binding site. The constant regions are not necessary for antigen binding and in some cases can be separated from the antibody molecule by proteolysis, yielding biologically active (i.e., binding) variable regions composed of half of a light chain and one quarter of a heavy chain.
Further, all antibodies of a certain class and their F
ab
fragments (i.e., fragments composed of V
L
, C
L
, V
H
, and C
H
1) whose structures have been determined by x-ray crystallography show similar variable region structures despite large differences in the sequence of hypervariable segments even when from different animal species. The immunoglobulin variable region seems to be tolerant towards mutations in the antigen-binding loops. Therefore, other than in the hypervariable regions, most of the so-called “variable” regions of antibodies, which are defined by both heavy and light chains, are, in fact, quite constant in their three dimensional arrangement. See for example, Huber, R.,
Science
233:702-703 (1986).
Recent advances in immunobiology, recombinant DNA technology, and computer science have allowed the creation of single polypeptide chain molecules that bind antigen. These single-chain antigen-binding molecules (“SCA”) or single-chain variable fragments of antibodies (“sFv”) incorporate a linker polypeptide to bridge the individual variable regions, V
L
and V
H
, into a single polypeptide chain. A description of the theory and production of single-chain antigen-binding proteins is found in Ladner et al., U.S. Pat. Nos. 4,946,778, 5,260,203, 5,455,030 and 5,518,889. The single-chain antigen-binding proteins produced under the process recited in the above U.S. patents have binding specificity and affinity substantially similar to that of the corresponding Fab fragment. A computer-assisted method for linker design is described more particularly in Ladner et al., U.S. Pat. Nos. 4,704,692 and 4,881,175, and WO 94/12520.
The in vivo properties of sFv polypeptides are different from MAbs and antibody fragments. Due to their small size, sFv polypeptides clear more rapidly from the blood and penetrate more rapidly into tissues (Milenic, D. E. et al., Cancer Research 51:6363-6371 (1991); Colcher et al.,
J Natl. Cancer Inst.
82:1191 (1990); Yokota et al.,
Cancer Research
52:3402 (1992)). Due to lack of constant regions, sFv polypeptides are not retained in tissues such as the liver and kidneys. Due to the rapid clearance and lack of constant regions, sFv polypeptides will have low immunogenicity. Thus, sFv polypeptides have applications in cancer diagnosis and therapy, where rapid tissue penetration and clearance, and ease of microbial production are advantageous.
A multivalent antigen-binding protein has more than one antigen-binding site. A multivalent antigen-binding protein comprises two or more single-chain protein molecules. Enhanced binding activity, di- and multi-specific binding, and other novel uses of multivalent antigen-binding proteins have been demonstrated. See, Whitlow, M., et al.,
Protein Engng.
7:1017-1026 (1994); Hoogenboom, H.R.,
Nature Biotech.
15:125-126 (1997); and WO 93/11161.
Ladner et al. also discloses the use of the single chain antigen binding molecules in diagnostics, therapeutics, in vivo and in vitro imaging, purifications, and biosensors. The use of the single chai

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for targeted delivery of nucleic acids does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for targeted delivery of nucleic acids, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for targeted delivery of nucleic acids will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3249699

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.