Surgery – Miscellaneous – Methods
Reexamination Certificate
2000-07-28
2002-03-12
Jastrzab, Jeffrey F. (Department: 3762)
Surgery
Miscellaneous
Methods
C607S003000, C600S544000
Reexamination Certificate
active
06354298
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method for storing and retrieving temporal information and applications thereof including devices that use the method of distributing temporal information into arrays of spatial patterns and a method of detecting the efficacy of drugs, toxic substances or treatments on human memory and other cognitive processes.
2. Brief Description of the Related Art
Brief Description of Prior Model: The new design derives loosely from a model the present inventor published of memory functions in the brain (Landfield, 1976). However, the prior model did not address storage of sequential information sets and the emergent elements of the updated model that deal with distribution and storage of temporal information represent a new invention that is not inherent in the prior model. The original model (Landfield, 1976) proposed that memory traces are formed in a neuron in which excitation generated by a non-information containing synchronous EEG wave occurs at approximately the same time as excitation from information-containing impulses arriving over other inputs. The summation of excitation from the two inputs is sufficient to activate the receiving neuron to fire impulses, which then leave lasting traces (memory) in that neuron as well as activate the next neurons in the chain. Because the model relies on summation between two brain waves, this process was noted to be somewhat analogous to the interference patterns formed by two coherent light beams (e.g., laser beams) projected onto a screen, which form light stripes where the wave maxima are in phase, and dark stripes where the wave maxima are out of phase and cancel. These optical patterns are often termed “interference fringes.” In addition, because the formation of holograms depends on such interference patterns between a coherent “reference beam” (usually a monochromatic laser beam) and a coherent “object beam” part of the laser beam that is split and reflected off of the object of which the holographic representation is being made), the brain model was also noted to be partly analogous to the interference pattern-holographic process of optics (Landfield, 1976).
However, the nature of neural information is of course substantially different from the phase information carried in reflected light beams in holograms, and some important conceptual differences exist between the brain model and holography. One difference is that, in the brain model, each EEG wave functions as a sampling and encoding mechanism that samples the amount of activity in a neuron within some time frame (generally, the excitatory phase of the EEG wave); that is, the information activity being processed in an assembly of neurons summates with the EEG wave, which is modified in each neuron proportionally to the degree of informational activity stimulating that neuron. The modified wave then transports that encoded “time-slice” of information as it travels through the brain. The next wave of the EEG rhythm captures the next “slice” of temporal information.
Many brain models for processing temporal information have been proposed, but very few deal with long term memory storage of that information. Those that do often propose the storage of sequential information in different oscillatory patterns or regions of the same neurons, or in different activity patterns in linked cell assemblies. However, it is highly difficult or not feasible to store temporally-tagged information in the same neurons.
Utility of the Invention At present, there are massive efforts underway at many pharmaceutical firms to develop new drugs for the improvement of memory, aimed at elderly or neurologically impaired individuals, and perhaps eventually at healthy young adults as well. One of the major problems of this drug development work, however, is that there are no rapid screening methods for testing efficacy of drugs on memory. The animal models used can be controversial and the data are not always generalizable to humans; in addition, the present cellular models being developed (e.g., long-term potentiation) are even more controversial (see Russo, “The Scientist” Vol 13, March, 1999).
If the model proposed here is even partially accurate, then it could be used to test the phase shifting, intensity of summation, and rates of travel of excitation through the hippocampus, either in in vitro organotypic brain slices or in animals chronically implanted with standard electrode arrays or other preparations, and therefore could potentially function as an extremely sensitive and accurate screening procedure for development of drugs that influence memory and perhaps other cognitive processes. Moreover, the method could be used by defense, medical, or environmental agencies of companies to detect or evaluate neurotoxic agents that impair memory.
Most electronic memory systems (computers) involve random access memories, in which information sets are stored in available sites and lose sequential information (other than date codes that must be interpreted by the user). The construction of devices that could learn, store and retrieve sequential information in a temporally ordered fashion, therefore, might have vast utility at which we can only begin to guess. This temporal learning capacity might, for example, vastly improve computer graphics or reprogramming of devices based on experience of operation; architectural or industrial designs will also benefit; instrument glitches or errors will be more readily self-corrected; numerous entertainment uses (computer games, holographic graphics, etc.) are also envisioned.
There have been and are intensive major efforts by defense and various research and industrial establishments to develop devices that can learn based on neural network principles. Clearly, the incorporation of a process for learning and storing temporally ordered information would be a major advantage for these efforts. The full range of possible applications is difficult to envision but it can be expected to be extensive based on the recent explosive developments in the electronic/optical industries.
SUMMARY OF THE INVENTION
The new aspect of the model deals with how the brain distributes the traveling informational “time slices” (waves) for storage in different, spatially-distinct neuronal arrays. The present invention stems from the realization that while it is highly difficult or not feasible to store temporally-tagged information in the same neurons, different time-linked information sets are more efficiently stored in separate spatially-distinct arrays of neurons. To accomplish this, we suggest that the brain sends the information-containing wavefronts along sheets of parallel fibers, each of which fiber synapses on (connects to) many dozens to hundreds of neurons sequentially (through synapses of passage).
As new information continuously passes along these parallel fibers, it is not intense enough by itself to activate the neurons to which the axon fibers connect sequentially unless these neurons are also activated simultaneously by another beam of excitation from a separate input source; that is, unless summation occurs. In the model, this separate “beam of excitation” comes from the excitatory phase of a synchronized EEG wave. As the EEG wave sweeps over an array of neurons, all neurons in that array are near-simultaneously depolarized (excited) by synchronized synaptic inputs. This excitation brings them close to threshold for firing impulses. Then, if intense impulses encoding information (high frequencies of firing) arrive over the parallel fiber lines in the same time window of peak EEG excitation, they will summate with the EEG excitation and fire the neurons. Because the excitation generated by the EEG wave is generally equivalent in each neuron, the activation of target neurons will occur proportionally to the intensity of activity on each parallel fiber.
The new principle for temporal storage is that the distribution in separate neuron arrays of temporally sequential information sets is accomplishe
Landfield Philip W.
Thibault Olivier
Jastrzab Jeffrey F.
McDermott & Will & Emery
University of Kentucky Research Foundation
LandOfFree
Method for storing and retrieving sequential information does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for storing and retrieving sequential information, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for storing and retrieving sequential information will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2849026