Dynamic magnetic information storage or retrieval – General processing of a digital signal – Data clocking
Reexamination Certificate
2000-02-29
2003-07-01
Faber, Alan T. (Department: 2651)
Dynamic magnetic information storage or retrieval
General processing of a digital signal
Data clocking
C360S075000
Reexamination Certificate
active
06587293
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the field of mass storage devices. More particularly, this invention relates to an improved apparatus and method for writing servo information to the disc of a high density disc drive.
BACKGROUND OF THE INVENTION
One key component of any computer system is a device to store data. Computer systems have many different places where data can be stored. One common place for storing massive amounts of data in a computer system is on a disc drive. The most basic parts of a disc drive are a disc drive housing, a disc that is rotated, an actuator assembly that moves a transducer to various locations over the disc, and electrical circuitry that is used to write and read data to and from the disc. The disc drive also includes circuitry for encoding data so that it can be successfully retrieved and written to the disc surface. A microprocessor controls most of the operations of the disc drive as well as passing the data back to the requesting computer and taking data from a requesting computer for storing to the disc.
To read and write data to the disc drive, the actuator assembly includes one or more arms that support the transducer over the disc surface. The actuator assembly is selectively positioned by a voice coil motor which pivots the actuator assembly about a pivot shaft secured to the drive housing. The disc is coupled to a motorized spindle which is also secured to the housing. During operation, the spindle provides rotational power to the disc. By controlling the voice coil motor, the actuator arms (and thus the transducers) can be positioned over any radial location along the rotating disc surface.
The transducer is typically placed on a small ceramic block, also referred to as a slider, that is aerodynamically designed so that it flies over the disc. The slider is passed over the disc in a transducing relationship with the disc. Most sliders have an air-bearing surface (“ABS”) which includes rails and a cavity between the rails. When the disc rotates, air is dragged between the rails and the disc surface causing pressure which forces the head away from the disc. At the same time, the air rushing past the cavity or depression in the air bearing surface produces a negative pressure area. The negative pressure or suction counteracts the pressure produced at the rails. The slider is also attached to a load spring which produces a force on the slider directed toward the disc surface. The various forces equalize so the slider flies over the surface of the disc at a particular desired fly height. The fly height is the distance between the disc surface and the transducing head, which is typically the thickness of the air lubrication film. This film eliminates the friction and resulting wear that would occur if the transducing head and disc were in mechanical contact during disc rotation. In some disc drives, the slider passes through a layer of lubricant rather than flying over the surface of the disc.
Information representative of data is stored on the surface of the storage disc. Disc drive systems read and write information stored on portions of the storage disc referred to as tracks. Transducers, in the form of read/write heads attached to the sliders, located on both sides of the storage disc, read and write information on the storage discs when the transducers are accurately positioned over one of the designated tracks on the surface of the storage disc. As the storage disc spins and the read/write head is accurately positioned above a target track, the read/write head can store data onto the track by writing information representative of data onto the storage disc. Similarly, reading data on a storage disc is accomplished by positioning the read/write head above a target track and reading the stored material on the storage disc. To write to or read from different tracks, the read/write head is moved radially across the tracks to a selected target track. The data is often divided between several different tracks. While most storage discs utilize a multiplicity of concentric circular tracks, other discs have a continuous spiral forming a single track on one or both sides of the disc.
During manufacture, servo information is encoded on the disc and subsequently used to accurately locate the transducer. The written servo information is used subsequently to locate the actuator assembly/transducer head at the required position on the disc surface and hold it very accurately in position during a read or write operation. The servo information is written or encoded onto the disc with a machine commonly referred to as a servo track writer (hereinafter STW). At the time the servo information is written, the disc drive is typically at the “head disk assembly” (hereinafter HDA) stage. The HDA includes most of the mechanical drive components but does not typically include all the drive electronics. During the track writing process, the STW precisely locates the transducer heads relative to the disc surface and writes the servo information thereon. Accurate location of the transducer heads is necessary to ensure that the track definition remains concentric. If the servo track information is written eccentrically, the position of the transducer head during subsequent operation will require relatively large, constant radial adjustments in order to maintain placement over the track center. When the tracks are sufficiently eccentric, a significant portion of the disk surface must be allotted for track misregistration.
When servo information is encoded or written to the discs of the disc drive several items are very important. First of all, the radial position of the servo marks must be carefully controlled so that the disc drive can always get an indication of the radial position of the transducer with respect to the disc. As a result, motor speed is carefully controlled in current servo writers. If the motor speed is not maintained at a selected RPM (revolutions per minute), repeatable run out error can result in the servo written disc drive. Secondly, the servo writer should not write in non-repeatable run out. This can happen if portions of HDA are vibrating during the servo writing operation. For example, the actuator may resonate at one rotational frequency. At other rotational frequencies, there can be spindle motor gyro effect or disc fluttering.
A constant desire or industry goal is to increase the storage capacity of disc drives. One way to increase capacity is to increase the density of tracks on the disc. Currently, the number of tracks per inch (TPI) is growing at a rate of 60% per year. It is contemplated that this trend will continue and further more that the percentage growth may even increase.
During manufacture, the time required to servo write a disc drive is lengthy. With the increased number of tracks on a disc and the constant trend to increase the number of tracks per inch, the length of time for servo writing discs will also increase. Another pressure is to cut down production time for disc drives. One way of doing this is by servo writing the disc while spinning the disc at a higher RPM than the designed spindle speed of the disc drive.
Presently, the selection of a rotational speed for the disc drive is severely constrained or limited by several factors. Present designs of servo writers do not allow for easy, flexible selection of the servo writer spindle motor speed. Spindle motor speed selection for a servo writer is generally constrained by many factors including the spindle motor gyro effect, disc flutter, the servo clock and the servo pattern. There are other factors that also may influence speed selection. Normally, the spindle motor is optimized at the disc drives operating speed so that the above factors are minimized at the operating spindle speed. At many of the spindle motor speeds other than the operating spindle motor speed, a bearing defect may very well induce the spindle motor gyro effect. The spindle motor gyro effect will generally cause a non-repeatable run out. This non-repeatable run out will b
Ang Chiap Heok
Ding Ming Zhong
Ooi Kian Keong
Quak Beng Wee
Sun Wei Wei
Faber Alan T.
McCarthy Mitchell K.
Seagate Technology LLC
LandOfFree
Method for servo writing servo pattern at a desired speed does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for servo writing servo pattern at a desired speed, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for servo writing servo pattern at a desired speed will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3042797