Method for sequentially transmitting a downlink signal from...

Telecommunications – Transmitter and receiver at same station – Radiotelephone equipment detail

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S103000, C370S334000

Reexamination Certificate

active

06185440

ABSTRACT:

FIELD OF INVENTION
This invention relates to the field of wireless communication systems, and more specifically, to the efficient broadcast of common downlink communication channel signals in a wireless communications system by a communication station that uses a multiple element transmitting antenna array in order to achieve a near omnidirectional pattern throughout its area of coverage.
BACKGROUND TO THE INVENTION
Cellular wireless communications systems are known, wherein a geographical area is divided into cells, and each cell includes a base station (BS, BTS) for communicating with subscriber units (SUs) (also called remote terminals, mobile units, mobile stations, subscriber stations, or remote users) within the cell. In such a system, there is a need for broadcasting information from a base station to subscriber units within the cell, for example to page a particular subscriber unit in order to initiate a call to that SU, or to send control information to all subscriber units, for example on how to communicate with the base station, the control information including, for example, base station identification, timing, and synchronization data. Such paging and control information is broadcast on what are called common control channels. Because often there is no prior information regarding the location of the remote user(s) that need to receive the paging or control information, or because such information is intended for several users, it is preferable to transmit such signals omnidirectionally, or near omnidirectionally, where omnidirectional in general means that the radiated power pattern of the base station is independent of azimuth and elevation within the prescribed coverage area of the base station. This invention deals with methods and apparatuses for achieving such omnidirectional transmissions.
Some examples of a cellular system to which the present invention can be applied are analog systems using the AMPS standard, digital systems which use variants of the Personal Handy Phone System (PHS) protocol defined by the Association of Radio Industries and Businesses (ARIB) Preliminary Standard, RCR STD-28 (Version 2) December 1995, and digital systems that use the Global System for Mobile communications (GSM) protocol, including the original version, 1.8 GHz version called DCS-1800, and the North American 1.9 GHz personal communications system (PCS) version called PCS-1900, these three called “variants” of GSM herein. The PHS and GSM standards define two general sets of functional channels (also called logical channels): a control channel (CCH) set and a traffic channel (TCH) set. The TCH set includes bi-directional channels for transmitting user data between the subscriber units and a base station. The CCH set includes a broadcast control channel (BCCH), a paging channel (PCH), and several other control channels not of concern herein. The BCCH is a unidirectional downlink channel for broadcasting control information from the base station to the subscriber units that includes system and channel structure information, and the PCH is a one-way downlink channel that broadcasts information from the base station to a selected set of subscriber units, or to a wide area of multiple subscriber units (the paging area), and typically is used to alert a particular remote station of an incoming call. The present invention is applicable to all downlink broadcasts and transmissions. It is especially applicable for BCCH and PCH that are used by a base station to simultaneously transmit common information to more than one subscriber (i.e., to broadcast). It is also applicable to other situations where it is desired to transmit RF energy omnidirectionally or at least with no nulls anywhere in the intended region.
The use of antenna arrays for the radiation of radio frequency (RF) energy is well established in a variety of radio disciplines. For the purposes of transmitting in the downlink from a base station which includes an antenna array to a remote receiver (the subscriber unit), the signal intended for the SU can be provided as input to each of the radiating elements of the array, differing from element to element only by gain and phase factors, usually resulting, by design, in a directional radiation pattern focused at the subscriber unit. The benefits of this sort of transmission strategy include increased gain over that possible using a single radiating element and reduced interference to other co-channel users in the system as compared to transmission by means of a single radiating element. Using such an antenna array, spatial division multiple access (SDMA) techniques also are possible in which the same “conventional channel” (i.e., the same frequency channel in a frequency division multiple access (FDMA) system, timeslot in a time division multiple access (TDMA) system, code in a code division multiple access (CDMA) system, or timeslot and frequency in a TDMA/FDMA system) may be assigned to more than one subscriber unit.
Any downlink signals sent are received by a subscriber unit, and the received signal at such receiving subscriber unit is processed as is well known in the art.
When a signal is sent from a remote unit to a base station (i.e., communication is in the uplink), the base station typically (and not necessarily) is one that uses a receiving antenna array (usually, and not necessarily the same antenna array as for transmission). The base station signals received at each element of the receiving array are each weighted in amplitude and phase by a receive weight (also called spatial demultiplexing weight), this processing called spatial demultiplexing, all the receive weights determining a complex valued receive weight vector which is dependent on the receive spatial signature of the remote user transmitting to the base station. The receive spatial signature characterizes how the base station array receives signals from a particular subscriber unit in the absence of any interference. In the downlink (communications from the base station unit to a subscriber unit), transmission is achieved by weighting the signal to be transmitted by each array element in amplitude and phase by a set of respective transmit weights (also called spatial multiplexing weights), all the transmit weights for a particular user determining a complex valued transmit weight vector which also is dependent on what is called the “downlink spatial signature” or “transmit spatial signature” of the remote user which characterizes how the remote user receives signals from the base station absence of any interference. When transmitting to several remote users on the same conventional channel, the sum of weighted signals is transmitted by the antenna array. This invention is primarily concerned with downlink communications, although the techniques certainly are applicable also to uplink communications when the subscriber unit also uses an antenna array for transmitting and omnidirectional transmission from such a subscriber unit is desired.
In systems that use antenna arrays, the weighting of the signals either in the uplink from each antenna element in an array of antennas, or in the downlink to each antenna element is called spatial processing herein. Spatial processing is useful even when no more than one subscriber unit is assigned to any conventional channel. Thus, the term SDMA shall be used herein to include both the true spatial multiplexing case of having more than one user per conventional channel, and the use of spatial processing with only one user per conventional channel. The term channel shall refer to a communications link between a base station and a single remote user, so that the term SDMA covers both a single channel per conventional channel, and more than one channel per conventional channel. The multiple channels within a conventional channel are called spatial channels. For a description of SDMA systems, see for example, co-owned U.S. Pat. Nos. 5,515,378 (issued May 7, 1996) and 5,642,353 (issued Jun. 24, 1997) entitled SPATIAL DIVISION MULTIPLE ACCESS WIRELESS COMMUNICATION SYS

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for sequentially transmitting a downlink signal from... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for sequentially transmitting a downlink signal from..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for sequentially transmitting a downlink signal from... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2561128

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.