Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid
Reexamination Certificate
2006-06-06
2006-06-06
Sisson, Bradley L. (Department: 1634)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving nucleic acid
C435S091100, C435S287200, C536S023100, C536S024330, C436S800000
Reexamination Certificate
active
07056661
ABSTRACT:
The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.
REFERENCES:
patent: 4994373 (1991-02-01), Stavrianopoulos et al.
patent: 5200313 (1993-04-01), Carrico
patent: 5302509 (1994-04-01), Cheeseman
patent: 5403708 (1995-04-01), Brennan et al.
patent: 5405747 (1995-04-01), Jett et al.
patent: 5470710 (1995-11-01), Weiss et al.
patent: 5547835 (1996-08-01), Koster
patent: 5601982 (1997-02-01), Sargent et al.
patent: 5620854 (1997-04-01), Holzrichter et al.
patent: 5631134 (1997-05-01), Cantor
patent: 5646264 (1997-07-01), Glazer et al.
patent: 5661028 (1997-08-01), Foote
patent: 5677196 (1997-10-01), Herron et al.
patent: 5688648 (1997-11-01), Mathies et al.
patent: 5695934 (1997-12-01), Brenner
patent: 5703222 (1997-12-01), Grossman et al.
patent: 5846727 (1998-12-01), Soper et al.
patent: 5858671 (1999-01-01), Jones
patent: 5922591 (1999-07-01), Anderson et al.
patent: 5961923 (1999-10-01), Nova et al.
patent: 6004744 (1999-12-01), Goelet et al.
patent: 6027890 (2000-02-01), Ness et al.
patent: 6048690 (2000-04-01), Heller et al.
patent: 6210896 (2001-04-01), Chan
patent: 6221592 (2001-04-01), Schwartz et al.
patent: 6232075 (2001-05-01), Williams et al.
patent: 6255083 (2001-07-01), Williams et al.
patent: 6263286 (2001-07-01), Gilmanshin et al.
patent: 6280939 (2001-08-01), Allen
patent: 6306607 (2001-10-01), Williams et al.
patent: 6355420 (2002-03-01), Chan
patent: 6399335 (2002-06-01), Kao et al.
patent: 6403311 (2002-06-01), Chan
patent: 6485944 (2002-11-01), Church et al.
patent: 6524829 (2003-02-01), Seeger
patent: 6632655 (2003-10-01), Mehta et al.
patent: 7008766 (2006-03-01), Densham
patent: 2002/0014850 (2002-02-01), Gilmanshin et al.
patent: 2002/0025529 (2002-02-01), Quake et al.
patent: 2002/0164629 (2002-11-01), Quake et al.
patent: 2003/0064366 (2003-04-01), Hardin et al.
patent: 2003/0186255 (2003-10-01), Williams et al.
patent: 2003/0194740 (2003-10-01), Williams et al.
patent: 0745686 (1996-12-01), None
patent: 0 258 017 (1997-06-01), None
patent: 0 834 576 (1998-04-01), None
patent: WO 90/13666 (1990-11-01), None
patent: WO 91/13075 (1991-09-01), None
patent: WO 93/21340 (1993-10-01), None
patent: WO 95/06138 (1995-03-01), None
patent: WO 96/27025 (1996-09-01), None
patent: WO 98/44152 (1998-10-01), None
patent: WO 99/05315 (1999-02-01), None
patent: WO 99/05315 (1999-02-01), None
patent: WO 99/19341 (1999-04-01), None
patent: WO 00/06770 (2000-02-01), None
patent: WO 00/09757 (2000-02-01), None
patent: WO 00/36151 (2000-06-01), None
patent: WO 00/36152 (2000-06-01), None
patent: WO 00/40750 (2000-07-01), None
patent: WO 00/53805 (2000-09-01), None
patent: WO 00/53812 (2000-09-01), None
patent: WO 00/58507 (2000-10-01), None
patent: WO 00/60072 (2000-10-01), None
patent: WO 00/60114 (2000-10-01), None
patent: WO 01/13088 (2001-02-01), None
patent: WO 01/16375 (2001-03-01), None
patent: WO 01/23610 (2001-04-01), None
patent: WO 01/25480 (2001-04-01), None
patent: WO 01/32930 (2001-05-01), None
patent: WO 01/57248 (2001-08-01), None
patent: WO 01/57249 (2001-08-01), None
patent: WO 01/94609 (2001-12-01), None
patent: WO 02/02813 (2002-01-01), None
patent: WO 02/03305 (2002-01-01), None
patent: WO 02/29106 (2002-04-01), None
patent: WO 02/061126 (2002-08-01), None
patent: WO 02/061127 (2002-08-01), None
patent: WO 02/072892 (2002-09-01), None
patent: WO 02/095070 (2002-11-01), None
patent: WO 02/101095 (2002-12-01), None
patent: WO 03/016565 (2003-02-01), None
patent: WO 03/020734 (2003-03-01), None
Egeling et al., Proceedings of the national Academy of Sciences, USA, Feb. 1998, vol. 95, pp. 1556-1561.
Voss et al,, “Automated Cycle Sequencing with Taquenase™: Protocols for Internal Labeling, Dye Primer and “Doublex” Simultaneous Sequencing,”BioTechniques, 23:312-318 (1997).
Novotny et al., “Theory of Nanometric Optical Tweezers,”Physical Review Letters79(4):645-648 (1997).
Kawata et al., “Feasibility of Molecular-Resolution Fluorescence Near-Field Microscopy Using Multi-Photon Absorption and Field Enhancement Near a Sharp Tip,”Journal of Applied Physics85(3):1294-1301 (1999).
Sánchez et al., “Near-Field Fluorescence Microscopy Based on Two-Photon Excitation with Metal Tips,”Physical Review Letters82(20):4014-4017 (1999).
Kristensen et al. “Rapid and Simple Preparation of Plasmids Suitable for Dideoxy DNA Sequencing and Other Purposes,”DNA Sequence—J. DNA Sequencing and Mapping1:227-232 (1991).
Davis et al., “Rapid DNA Sequencing Based Upon Single Molecule Detection,”Genetic Analysis Techniques and Applications, 8(1):1-7 (1991).
Harding et al., “Single-Molecule Detection as an Approach to Rapid DNA Sequencing,”Trends in Biotechnol., 10(1/2):55-57 (1992).
Nickerson et al., PolyPhred: Automating the Detection and Genotyping of Single Nucleotide Substitutions Using Fluorescence-Based Resequencing,Nuc. Acids Res., 25(14):2745-2751 (1997).
Dobrikov et al., “Sensitized Photomodification of Single-Stranded DNA by a Binary System of Oligonucleotide Conjugates,”Antisense&Nucleic Acid Drug Development, 7:309-317 (1997).
Dörre, et al, “Techniques for Single Molecule Sequencing” (1997) vol. 5: 139-152.
Goodwin, et al. Application of Single Molecule Detection to DNA Sequencing.Nucleosides & Nucleotides1997; 16:5&6, 543-550.
Ronaghi, et al. A Sequencing Method Based on Real-Time Pyrophosphate.Science1998; 281, 363-365.
Sanger, et al. DNA Sequencing With Chain-Terminating Inhibitors.Proc. Natl. Acad. Sci USA1977; 74:12, 5463-5467.
Schwille, P., et al., “Dual-Color Fluorescence Cross-Correlation Spectroscopy for Multicomponent Diffusional Analysis in Solution” (1997)Biophysical Journal72: 1878-86.
Weiss, S. “Fluorescence Spectroscopy of Single Biomolecules” (1999)Science283: 1676-83.
Craighead Harold G.
Foquet Mathieu
Korlach Jonas
Levene Michael
Turner Stephen
Cornell Research Foundation Inc.
Sisson Bradley L.
Wilson Sonsini Goodrich & Rosati
LandOfFree
Method for sequencing nucleic acid molecules does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for sequencing nucleic acid molecules, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for sequencing nucleic acid molecules will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3677160