Electric heating – Metal heating – By arc
Reexamination Certificate
1999-01-29
2002-07-16
Dunn, Tom (Department: 1725)
Electric heating
Metal heating
By arc
C219S121670, C219S121700, C219S121760, C219S121770, C225S002000
Reexamination Certificate
active
06420678
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
This invention generally relates to the physical separation of a non-metallic substrate into a plurality of smaller substrate pieces. In particular, the invention relates to a method and apparatus for splitting a non-metallic substrate by the process of micro-cracking and controlled propagation.
BACKGROUND OF THE INVENTION
Many products made from a brittle non-metallic material, for example glass and semi-conductor wafer materials, are formed by separating a piece, sheet, wafer, or panel into a number of smaller pieces of the desired size or sizes. For example, many glass products are formed by a large sheet of glass separated into smaller pieces of the desired size. The most common method for cutting these sheets and other substrates includes the use of mechanical cutting tools. For example, glass sheets have been cut by scribing the glass with a diamond-tipped scribe or a carbide wheel to weaken the molecular structure. After the scribe has been made, physical pressure is applied to create a force at the scribe line to hopefully break the glass along the scribe line.
However, cutting with mechanical tools has significant disadvantages. One significant disadvantage is the inability to obtain smooth edges. This may be unacceptable for many products because of the required quality of the edge faces. Accordingly, as an attempt to rectify this drawback, secondary steps such as grinding, edge seaming, and polishing may be performed. However, such secondary steps slow down the manufacturing process and can be expensive. Another disadvantage is that edge defects on some of these rough edges may result in crack propagation during further processing or in the ultimate product. The edge strength of the substrate is also reduced by this process. Yet another disadvantage is the creation of glass particulates and “shards” during the cutting stage. These glass shards and particulate are undesirable because they can contaminate the substrate being separated, and require that additional clean-up steps be performed to minimize their impact on the manufacturing process. Mechanical tools also create wide scribe lines which are undesirable because the process reduces the useful area of the substrate from which the parts are cut. Further, mechanical tools are subject to wear, and worn tools result in inconsistent and unreliable cuts.
One alternative to mechanical division of pieces of non-metallic brittle substrates is using a laser to melt the substrate along a predetermined line. European Patent Application No. 82301675.3 discloses one such method. According to this method, a sheet of glass is mounted to a plate. A high-powered laser beam is applied to cause rapid localized heating of the glass in a small heat affected zone that extends through the entire thickness of the glass. This heats the glass above its annealing temperature so that part of the glass is vaporized and part of the glass becomes viscous. A pressurized air jet removes the molten glass from the heat affected zone to divide the glass substrate. However, this process also suffers from drawbacks.
A drawback of this process is that predictable and highly accurate cuts are unobtainable because the glass is subjected to extreme temperatures and is removed from the cutting line. This lack of precision is magnified with thicker pieces of glass. Additionally, secondary steps such as grinding, edge seaming, and polishing may also need to be performed to achieve desired edge face quality.
Another alternative to mechanical cutting of pieces of non-metallic brittle materials has been the process of creating a localized fracture through a substrate, and propagating the localized fracture to part the substrate. On such method is disclosed in U.S. Pat. No. 3,629,545 to Graham et al. According to this process, light from a laser is focused by a lens system upon the upper surface of the substrate at an extreme edge of the substrate. The lens system is adjusted so that the focal point of the laser beam image falls precisely at the upper surface of the substrate. The concentrated laser energy creates a localized fracture in the substrate. The substrate is moved relative to the beam. This relative movement propagates the initial localized fracture along a desired partition path. There have been many variations to this process.
The processes of creating a localized fracture and propagating the fracture have also suffered drawbacks. One drawback is that these processes include inefficiencies rendering them impractical and/or ineffective for many commercial applications. For example, some of these processes are limited by cutting speed. Further, some of these processes still require manual breakage of the substrate after the passage of the laser. Another drawback to these processes is the inherent limitations imparted due to the coefficient of thermal expansion of the substrate being cut.
Therefore, there exists a need for an improved method of dividing or parting substrates of brittle non-metallic material that overcomes these and other problems.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method for separating non-metallic substrate by microcracking that overcomes the drawbacks of the prior art. Thus, objects of the present invention include making the process easily adaptable for many applications, achieving fast cutting speeds and total separation of the substrate, and eliminating the need for secondary operations.
It is an object of the present invention to provide a method for separating a non-metallic substrate by propagating a microcrack. According to the method, an incident beam of coherent radiation having a Gaussian energy profile is generated. The Gaussian energy profile of the beam is flattened out. The beam having the flattened Gaussian energy profile is directed onto the substrate to form a beam spot. A coolant stream is introduced onto the substrate behind at least a portion of the beam spot. The beam and the coolant stream are moved relative to the substrate.
It is another object of the present invention to provide a method of separating a non-metallic substrate along a separation line by propagating a microcrack. The method includes generating an incident beam of coherent energy, and splitting at least a portion of the beam to form first and second distinct beams of coherent energy. At least a portion of the first beam is directed onto the substrate to impinge at a first beam spot. At least a portion of the second beam is directed onto the substrate to impinge at a second beam spot that is separate from the first beam spot. A coolant stream is projected onto the substrate so that the coolant stream contacts the substrate at a cooling locality. The first and second beams and the coolant stream are moved relative to the substrate so that the first and second beam spots and the cooling locality move across the substrate.
It is yet another object of the present invention to provide a method for separating a non-metallic substrate by propagating a microcrack. The method includes: applying a first incident beam of coherent radiation onto the substrate at a first spot, supplying a coolant stream onto the substrate at a position behind at least a portion of the first spot; and applying a second incident beam of coherent radiation onto the substrate behind the first spot. The first and second beams and the coolant stream are simultaneously moved the relative to the substrate along in a predetermined direction for separation.
In another object, a method for separating a non-metallic substrate by propagating a microcrack is provided. The method includes applying an incident beam of coherent radiation onto the substrate to form a beam spot where it impinges on the substrate, and applying a coolant stream of helium gas onto the substrate behind at least a portion of the beam spot. The beam and the coolant stream of helium gas are simultaneously moved the relative to the substrate in a first direction.
In another object of the present invention, a method of separating a non-meta
Banner & Witcoff , Ltd.
Dunn Tom
Edmondson L.
LandOfFree
Method for separating non-metallic substrates does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for separating non-metallic substrates, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for separating non-metallic substrates will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2873087