Method for separating narrowband and broadband services on a...

Telephonic communications – Subscriber line or transmission line interface – Hybrid circuit

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S093050, C379S093090, C379S390040, C370S463000

Reexamination Certificate

active

06748076

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to the implementation of a transmission link via which both narrowband and broadband services are offered. More specifically, the invention relates to the separation of narrow-band POTS/ISDN services from broadband services, particularly broadband services implemented with ADSL (Asymmetrical Digital Subscriber Line) technology. Narrowband services in this context denote services offered in the frequency range below the ADSL band.
BACKGROUND OF THE INVENTION
Optical fibre is a self-evident choice as a transmission medium for a core network, since trunk connections usually require high transmission capacity, the transmission distances used are long, and ready routes are often available for cables. Also for subscriber connections (line between a local exchange and a subscriber) the situation is rapidly changing, since various services implemented with multimedia, requiring a high transmission rate, will be commonplace from the point of an individual consumer as well.
However, no significant savings in the costs for constructing a future network offering broadband services can be foreseen, since the costs mainly arise from cable installation costs. However, it is desired to construct optical fibre also in the subscriber network as much as possible, since it is clearly seen that there will be a demand for it in the future. The costs of renewing subscriber networks are very high, however, and in terms of time decades are in fact at issue in this context. High costs are indeed the principal impediment to the spreading of fibre to the subscriber network.
On account of the above reasons, the possibilities of utilizing conventional subscriber line (metal pair cable) for fast data transmission, i.e. for rates clearly above the rate of an ISDN basic access (144 kbit/s), have been mapped out more effectively than before. The present ADSL (Asymmetrical Digital Subscriber Line) and HDSL (High bit rate Digital Subscriber Line) techniques do offer new possibilities for transfer of fast data and video along the pair cable of a telephone network to subscriber terminals.
An ADSL transmission link is asymmetric in the sense that the transmission rate from network to subscriber is much higher than from subscriber to network. ADSL technology is mainly intended for various on-demand services. In practice, the rate of an ADSL transmission link from network to subscriber is in the order 2-6 Mbit/s and from subscriber to network in the order 32-640 kbit/s (mere control channel). (The data rate of an ADSL line is always n×32 kbit/s, where n is an integer.)
The HDSL transmission technique relates to the transfer of a 2 Mbit/s-level digital signal in a metal pair cable. HDSL transmission is symmetric, that is, the transmission rate is the same in both directions.
Since the above solutions only afford rates in the order 1-6 Mbit/s, a technique enabling ATM-level rates (10-55 Mbit/s).has also been sought for the pair cable of a subscriber line. The international standardization body ETSI (European Telecommunications Standards Institute) is working out a specification on VDSL (Very high data rate Digital Subscriber Line) equipment enabling such rates. By VDSL technology, both symmetric and asymmetric links can be implemented.
The above technologies, by which fast data is transferred through a pair cable, are called by the common name xDSL. Thus, even though it is not yet possible to offer broadband services to end users by utilizing optical fibre, by means of these techniques the present telephone operators are capable of offering said services through existing subscriber lines.
Since ADSL seems at the moment to be the most promising technique for implementing broadband services, it will be used as an example of the access technique by means of which the services are offered.
The ADSL Forum has specified a generic network model for xDSL links; this is illustrated in FIG.
1
. The device that connects to a subscriber line at the subscriber end is called ATU-R (ADSL Transmission Unit—Remote), and the device that connects to a subscriber line at the network end (e.g. at a local exchange) is called ATU-C (ADSL Transmission Unit—Central). These devices are also called ADSL modems (or ADSL transceivers), and they define between them an ADSL link. The high-speed data on the ADSL link is connected to the subscriber line in such a way that the subscriber can still use the old narrowband POTS/ISDN services, but the subscriber additionally has a high-speed data connection available. In principle, there are two ways to multiplex POTS and ADSL signals or ISDN and ADSL signals onto the same subscriber line: time division multiplexing or frequency division multiplexing. The present invention employs frequency division multiplexing, in which narrowband and broadband services are separated from one another by a splitter or cross-over carrying out the frequency division of ADSL signals and narrow-band signals. The splitter can be a POTS/ADSL splitter PS or an ISDN/ADSL splitter IS.
The terminals TE at the end user can be of many different types, such as terminals TE
1
of a cable TV network, personal computers TE
2
or even ISDN phones TE
3
if time division multiplexing is used. A service module SMi (i=1 . . . 3) is provided for each terminal, carrying out the functions relating to terminal adaptation. Such service modules can in practice include Set Top Boxes, PC interfaces or LAN routers, for example. A premises distribution network PDN, located at the premises of the subscriber, connects the ATU-R to the service modules.
At the network end of the ADSL link, an access node AN constitutes a concentration point for narrowband and broadband data, at which point the traffic arriving from different service systems through different networks is concentrated. The access node is located at the exchange of a telephone network, for example.
In
FIG. 1
, reference A denotes the part constituted by a private network, B the part constituted by a public network, and C a network located at the premises of a subscriber (the telephones are naturally located at the subscriber).
The generic network model relating to xDSL links was set forth above in order to describe the overall environment of the invention. Since the invention relates to the part constituted by the actual ADSL link, which is located either between the local exchange and the subscriber or between a street cabinet and the subscriber, only this part located between the ADSL modems will be described in closer detail hereinbelow.
As stated previously, POTS (Plain Old Telephone Service) and ADSL services can be frequency multiplexed onto the same pair cable by means of a splitter.
FIG. 2
illustrates a subscriber line divided between POTS and ADSL services, denoted with reference SL. In practice, the splitter (PS
1
or PS
2
) comprises two filter units: a low-pass filter unit LPF prevents the access of signals of the ADSL band (25 kHz . . . 1, 1 MHz)to the POTS interface, and a high-pass filter unit HPF prevents the access of signals of the POTS band (0 Hz . . . 4 kHz) to the ADSL interface. Thus, the frequency division of the link is of the kind shown in FIG.
3
: signals relating to POTS or ISDN services are transferred at low frequencies, and ADSL signals are transferred at higher frequencies. The splitter has a line port (P) connected to the subscriber line. The low-pass filter unit is connected between the line port and the POTS interface I
1
, and the high-pass filter unit HPF is connected between the line port and the ADSL interface I
2
.
Teleoperators determine the viability of filters by means of a reference impedance, which is defined so as to correspond to the actual impedance of the subscriber link as well as possible.
FIG. 4
depicts a typical reference impedance Zref used by operators, comprising a resistance (R
11
) followed by a parallel connection of a resistance (R
12
) and a capacitor (C
11
). Some operators define the reference impedance as real (R
11
=C
11
=0), but in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for separating narrowband and broadband services on a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for separating narrowband and broadband services on a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for separating narrowband and broadband services on a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3364216

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.