Method for separating benzothiophene compounds from...

Chemistry of hydrocarbon compounds – Purification – separation – or recovery – By addition of extraneous agent – e.g. – solvent – etc.

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C585S860000, C585S857000, C585S863000, C585S658000, C585S662000, C585S663000, C585S660000, C208S240000, C208S242000, C208S236000

Reexamination Certificate

active

06441264

ABSTRACT:

The present invention relates to the separation of benzothiophene compounds from a mixture of hydrocarbons comprising them, for example from a fuel, such as gas oil. The importance of such a separation has increased in recent years as a result of the introduction or the envisaged application of various laws across the whole world targeted at lowering the level of sulfur-comprising products in gas oil.
In the description which follows and in the claims, the expressions given hereinbelow have the following respective meanings:
“benzothiophene compounds” means both benzothiophene and its homologues, for example dibenzothiophene, and the mono-, di- or trisubstituted derivatives of these, for example dialkyl, trialkyl, alkenyl and aryl;
“electron-withdrawing” means any organic compound which is deficient or impoverished in electrons and in particular substituted by groups which are themselves electron-withdrawing groups, for example the sulfo, nitro, halo, haloalkyl, for example trifluoromethyl, cyano, carbonyl, carboxyl, amido or carbamido groups or a combination of these;
“gas oil” means, for example, a diesel engine fuel, a kerosene, a heating oil and other fuel oils exhibiting a boiling temperature generally of between approximately 175° C. to [sic] approximately 400° C.
Among the molecules present in such mixtures of hydrocarbons, for example in gas oil, benzothiophene compounds, in particular dialkyldibenzothiophenes, for example 4,6-dimethyldibenzothiophene (DMDBT), are known as being among the most resistant to the usual catalytic processes for deep hydrodesulfurization. For this reason, the present invention will be more particularly described and explained with respect to the separation of this molecule.
The conventional hydrodesulfurization process mentioned above, which is well known per se, requires fairly drastic and expensive operating conditions to remove or only reduce the content of dibenzothiophene derivatives in mixtures of hydrocarbons, for example gas oils, which limits its industrial application. There has consequently been a search to find a process which makes it possible to separate this group of molecules selectively and efficiently from the other constituents of such mixtures.
U.S. Pat. No. 5,454,933 discloses an approach for reducing the content or selective separation of dibenzothiophene (DBT) or its derivatives in a gas oil feed by adsorption of the dibenzothiophene molecules on solid supports, such as activated carbon, zeolites, silica/alumina, and the like. The selection carried out is based essentially on the shape of the molecule to be removed, that is to say that only steric factors come into consideration in the application of this process. This method has proved to be efficient but its practical and economic advantage is limited by two characteristics of the materials used as adsorbents. On the one hand, their adsorption capacity for dibenzothiophene does not exceed 12% by weight and, on the other hand, their selectivity with regard to aromatic compounds, such as 1-methylnaphthalene (MN), measured by the separation factor &agr;
DBT/MN
=[DBT/MN]
ads
/[DBT/MN]
soln
) [sic], is only 7 in the best of the cases cited.
The present invention has been set the problem of at least partially, indeed even completely, in an inexpensive way, separating the benzothiophene compounds as defined above from a mixture of hydrocarbons comprising them, for example gas oil, by the application of another treatment route which is independent of the only steric factors touched on above in the above United States patent.
This problem has been solved, surprisingly, by the application not of a principle of shape selectivity as described in the abovementioned patent but by the application of the principle of interaction of donor-acceptor type (or of charge transfer type) in carrying out the separation of the benzothiophene compounds.
A subject matter of the present invention is consequently a process for the separation of at least one benzothiophene compound from a mixture of hydrocarbons comprising it, the process being more particularly characterized in that said mixture or a fraction obtained from the latter is brought into contact with a reagent comprising a &pgr;-acceptor complexing agent, in order to obtain a donor-acceptor complex between the acceptor complexing agent and said benzothiophene compound, and in that said complex is separated from said mixture or from said fraction, in order to obtain a fraction impoverished in or purified from said benzothiophene compound.
The application of the principle given above makes possible a very selective separation (&agr; greater than 100) with respect to non-sulfur-comprising aromatic compounds and a much more efficient separation (capacity, for example, of the order of 30% to 50%) than according to the process disclosed in the abovementioned United States patent.
A process according to the present invention makes it possible to obtain a desulfurized mixture of hydrocarbons exhibiting a sulfur content of between 0 ppm and 2000 ppm, preferably between 0 ppm and 500 ppm.
A process according to the present invention makes it possible to decrease the load of benzothiophene compounds to a value of between 0% and 75% and preferably between 0% and 15%, with respect to the initial weight of said compounds.
In a preferred form of the invention, the process is carried out in a homogeneous phase, that is to say without the intervention of a solid phase for attaching or supporting the &pgr;-acceptor complexing agent.
In another preferred form of the invention, the process is carried out in a heterogeneous phase, that is to say with the intervention of a solid phase as defined above.
The process for the separation of benzothiophene compounds can also be carried out before or after the stage of deep catalytic hydrodesulfurization known per se. Advantageously, and in order to render the separation process more advantageous from an economic view point, the latter is carried out before a stage of deep catalytic hydrodesulfurization, in which case the fraction impoverished in benzothiophene compound is subjected to a deep catalytic hydrodesulfurization. This is because the process according to the invention makes it possible in particular to remove the dibenzothiophene compounds and thus makes it possible to carry out the stage of deep catalytic hydrodesulfurization under milder temperature and pressure conditions and thus to prolong the lifetime of the catalyst.
The complex is preferably separated from the mixture by extraction with an organic solvent, for example chloroform.
Furthermore, it is preferable to regenerate the reagent by separating the complex into benzothiophene compounds and complexing agent. The separation of the complex is preferably carried out chemically but can also be carried out by application of physicochemical means.
The reagent can be regenerated:
by reducing the complex separated from the mixture, in order to form a salt of the &pgr;-acceptor agent;
and by reoxidizing the salt, in order to regenerate the &pgr;-acceptor complexing agent.
In accordance with the present invention, the &pgr;-acceptor complexing agent comprises an electron-withdrawing compound or a compound which is impoverished in electrons. This agent is said to be a “&pgr;-acceptor” agent because, generally, it possesses a system of &pgr; electrons or of &pgr; type. The &pgr;-acceptor complexing agent preferably comprises an aromatic compound substituted by at least one electron-withdrawing group chosen more preferably from the group consisting of the sulfo, nitro, fluoro, trifluoromethyl, cyano, carbonyl, carboxyl, amido and carbamido groups. A preferred example of such a &pgr;-acceptor complexing agent is chosen from a group consisting of the family of substituted or unsubstituted quinones, more preferably dichlorodicyanobenzoquinone, anthraquinone, benzoquinone or tetracyanoquinodimethane, or the family of substituted or unsubstituted fluorenones, more preferably tetranitrofluorenone or dinitrofluoren

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for separating benzothiophene compounds from... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for separating benzothiophene compounds from..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for separating benzothiophene compounds from... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2954211

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.