Method for separating analogous organic compounds

Organic compounds -- part of the class 532-570 series – Organic compounds – Unsubstituted hydrocarbyl chain between the ring and the -c-...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C546S090000, C585S809000, C585S810000, C585S820000, C585S829000, C210S660000, C210S690000

Reexamination Certificate

active

06492513

ABSTRACT:

This application is a 371 of PCT/JP 00/03251, filed on May 9, 2000
TECHNICAL FIELD
The present invention relates to a method for separating analogous compounds, more particularly a method for separating a lactone-containing high-molecular weight compound having an alkyl group as its side chain from a lactone-containing high-molecular weight compound having an alkenyl group as its side chain by using a sulfonic acid group-containing strong cation exchange resin pretreated with silver ions.
BACKGROUND ART
It is conventionally known to use silver ions for separating cis-trans isomers of an unsaturated aliphatic acid having the same carbon number (
J. Chromatography
, 149(1978) 417-). However, it has not been found out yet how to effectively separate compounds which are slightly different in a part of molecular structure, e.g., a compound having an alkyl group as its side chain from a compound having an alkenyl group as its side chain. This is because such compounds have the same or almost the same carbon number and are similar to each other in physical properties such as solubility in and affinity to solvents.
DISCLOSURE OF INVENTION
The inventors of the present invention have made extensive studies for a method for effectively separating compounds resembling each other in physical properties without changing the compounds themselves. Unexpectedly, they have found a method for separating compounds resembling each other in physical properties, i.e., a lactone-containing high-molecular weight compound having an alkyl group as its side chain from a lactone-containing high-molecular weight compound having an alkenyl group as its side chain, the lactone-containing high-molecular weight compounds having a common basic chemical structure, by using a sulfonic acid group-containing strong cation exchange resin pretreated with silver ions.
As suitable examples of the sulfonic acid group-containing strong cation exchange resins, mentioned are a synthetic base or a base of a silicon gel, such as gel-type resins and porous resins which can be used with a polar solvent but cannot be used with a nonpolar solvent; and highly porous resins which can be used with both polar and nonpolar solvents. These resins may be selected according to the polarity of an eluent used.
The sulfonic acid group-containing strong cation exchange resin may be a benzenesulfonic acid group-containing strong cation exchange resin having benzenesulfonic acid groups at an end. For example, the resin may be a base of a copolymer of a styrene monomer and divinylbenzene (DVB), or a base of silica gel.
As examples of benzenesulfonic acid group-containing strong cation exchange resins, i.e., sulfonated copolymers of styrene monomer and DVB, mentioned are Diaion® (SK series, RCP series, HPK series, PK series such as PK 206) (trademark, produced by Mitsubishi Chemical Corporation, Japan), Amberlite® (IR120B, IR200) and Duolite® (C20, C26) (trademark, produced by Rohm & Haas Company), Dowex® (50W-X8, MSC-1) (trademark, produced by Dow Chemical Company), Ionac® (C-240) (trademark, produced by Sybron Chemicals Inc.) and lewatit® (S-100, SP series) (trademark, produced by Bayer Corporation).
As examples of benzenesulfonic acid group-containing strong cation exchange resins having silica gel as a base, mentioned are strong cation exchange resins coated with a benzenesulfonic acid group-containing silicone polymer such as Capcell Pak® (SCX series) (trademark produced by Shiseido Company Limited, Japan) whose base is coated with a thin film of silicone polymer and to which a sulfonic acid group at an end is then introduced.
Among these benzenesulfonic acid group-containing strong cation exchange resins, Diaion® (RCP series and PK series) and Capcell Pak® (SCX series) are particularly preferred.
The silver ion usable for pretreating the sulfonic acid group-containing strong cation exchange resin may preferably be provided from various silver salts which can produce silver ions in water, such as silver nitrate, silver perchlorate or the like.
The sulfonic acid group-containing strong cation exchange resin may be pretreated with the silver ion by passing an aqueous solution of the silver salt therethrough if the resin is of an H type, or if it is of an Na type, by changing it into the H type, washing with water, adjusted to pH 3 to 4 and passing an aqueous solution of the silver salt. This pretreatment with silver ions may preferably be carried out by charging the silver salt at 1 mol/L-R or higher.
The purification method of the present invention can be carried out by the following steps.
(i) The mixture, i.e., the crude substance to be separated, containing the “lactone-containing high-molecular weight compound having an alkyl group as its side chain” and the “lactone-containing high-molecular weight compound having an alkenyl group as its side chain” can be dissolved in a suitable solvent, such as acetone, etc, and be charged to the column chromatography filled with the sulfonic acid group-containing strong cation exchange resin pretreated with silver ions.
(ii) And, the elution can be carried out with a suitable eluent, such as acetone, a mixture of ethyl acetate and methyl alcohol, and so on.
Separation method using the sulfonic acid group-containing strong cation exchange resin pretreated with silver ions may be conducted by a fixed bed system or a continuous bed system. The fixed bed system includes a single bed system, a multiple bed system, a double bed system, a mixed bed system, an ion exchange filtration system, a circulatory system and the like, from the viewpoint of operational process. The fixed bed system includes a down flow regeneration system, an ascending flow regeneration system, a countercurrent ascending flow regeneration system, a countercurrent regeneration system, an ex-column regeneration system and the like, from the viewpoint of regeneration process. On the other hand, the continuous bed system includes a fluidized bed system (a countercurrent contacting system, a multistage batch system), a moving bed system (an ascending type (a single column type, a multiple column type), a descending type (a single column type, a multiple column type), a simulated moving-bed system, an endless belt system (a liquid-liquid extraction system)) and the like, among which the simulated moving-bed system is efficient and suitable for mass production.
The lactone-containing high-molecular weight compound to which the separation method of the present invention may be applicable means those having at least one lactone ring in their molecules and having a molecular weight of about 400 or more. They may be monocyclic, bicyclic, tricyclic or the like. More preferably, they are formed of 12 or more atoms. Such monocyclic compounds include erythromycins, leucomycins, methymycins and the like. Such tricyclic compounds include compounds having a lactone ring such as a tricyclic compound shown in EP0184162; hetero atoms-containing tricyclic compounds shown in EP0427680, EP0532088 or W093/04680. And the most preferable one is 1,14-dihyroxy-12-[2-(4-hydroxy-3-methoxycyclohexyl)-1-methylvinyl]-23,25-dimethoxy-13,19,21,27-tetramethyl-11,28-dioxa-4-azatricyclo[22.3.1.0
4.9
]octacos-18-ene-2,3,10,16-tetraone. And the most preferable position which is substituted by an alkyl or alkenyl group as the side chain is the 17-position thereof, and which is tacrolimus when the 17 position is substituted with allyl and ascomycin when it is substituted with ethyl. Further, rapamysins and the like are also exemplified as a suitable one.
As alkyl group(s) as the side chain of the lactone-containing high-molecular weight compound, mentioned are straight or branched alkyl groups having a carbon number of 1 to 6 such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, hexyl and the like, among which preferred are those having a carbon number of 1 to 4 such as methyl, ethyl, propyl, isopropyl, butyl and isobutyl.
As alkenyl group(s) as the side chain of the lactone-containing high-molecular weight c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for separating analogous organic compounds does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for separating analogous organic compounds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for separating analogous organic compounds will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2944191

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.