Image analysis – Applications – Reading paper currency
Reissue Patent
2001-06-28
2004-11-30
Patel, Jayanti K. (Department: 2625)
Image analysis
Applications
Reading paper currency
C209S534000, C235S379000, C434S110000, C902S007000
Reissue Patent
active
RE038663
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
The field of this invention relates to high-volume currency processing using currency processing machines.
BACKGROUND OF THE INVENTION
Automated, high-volume currency processing is a growing international industry affecting numerous aspects of the distribution, collection, and accounting of paper currency. Currency processing presents unique labor task issues that are interwined with security considerations. Currency processing requires numerous individual tasks; for example; the collection of single notes by a cashier or bank teller, the accounting of individual commercial deposits or bank teller pay-in accounts, the assimilation and shipment of individual deposits or accounts to a central processing facility, the handling and accounting of a currency shipment after it arrives at a processing facility, and the processing of individual accounts through automated processing machines. Any step in the process that can be automated, thereby eliminating the need for a human labor task, saves both the labor requirements for processing currency and increases the security of the entire process. Security is increased when instituting automated processes by eliminating opportunities for theft, inadvertent loss, or mishandling of currency and increasing accounting accuracy.
A highly automated, high-volume processing system is essential to numerous levels of currency distribution and collection networks. Several designs of high-volume processing machines are available in the prior art and used by such varied interests as national central banks, independent currency transporting companies, currency printing facilities, and individual banks. In general, currency processing machines utilizes a conveyor system which transports individual notes past a series of detectors. By way of example, a note may be passed through a series of electrical transducers designed to measure the note's width, length, and thickness. The next set of sensors could be optical sensors recording the note's color patterns. Detectors can likewise be used to detect specific magnetic or other physical characteristics of individual notes.
High volume currency processing machines typically pull individual notes from a stack of currency through a mechanical conveyor past several different detectors in order to facilitate the sorting of the individual notes and the accumulation of data regarding each note fed through the machine. For example, a currency processing machine can perform the simple tasks of processing a stack of currency in order to ensure that it is all of one denomination with proper fitness characteristics while simultaneously counting the stack to confirm a previous accounting. A slightly more complex task of separating a stack of currency into individual denominations while simultaneously counting the currency can be accomplished as well. On the more complex end of the prior art currency processing machines, a stack of currency consisting of various denominations can be fed into the machine for a processing that results in the separation of each denomination, a rejection of any currency that does not meet fitness specifications, the identification of counterfeit bills, and the tracking of individual notes by serial number.
Prior art high-volume currency processing machines are loaded with one single stack of currency, identified to a single set of accounting parameters, before executing the sort process. For example, a stack of currency associated with a specific commercial deposit at a bank may be loaded at the beginning of the currency processing cycle. The currency is then fed into the currency processing machine and sorted based on the needs of the customer. Data obtained from the sort process, for example the number of each denomination note that was detected during the procedure and the total deposit amount, is then compared to the same data identified to the stack of currency prior the processing cycle. However, a need exists for a currency processing method that reduces the labor involved in loading the currency processing machine and improves the security involved in this step. Specifically, a need exists for a method which can process numerous stacks of currency identified to individual accounting parameters one after another without having to wait to reload or stop the machine in order review data collected on each individual account. It is this need which is addressed by the present invention.
SUMMARY OF THE INVENTION
This invention relates to a method of semi-continuous processing of currency using uniquely designed separator cards defining individual accounting subsets of currency within a larger volume batch feed of currency. This invention relates to an improved method of processing currency with high-speed and high-volume currency processing machines such as those presently manufactured and marketed by Currency Systems International of Irving, Tex. The present state of the art utilizes such currency processing machines in batch process feeds of currency. A single stack of currency, identified to a particular set of accounting parameters, is placed into the currency processing machine manually and then processed and sorted by the currency processing machine. For example, one stack of currency may represent a commercial deposit of a single day's cash collection for a single retail store that was deposited to the retail store's local bank. The single stack could also be identified to an individual teller's shift pay-in collections from a single bank after this teller's collections are shipped to a central bank for processing. Data obtained from the currency processing machine sort of a single stack of currency is then retrieved from the machine and the next batch of currency is placed into the machine for the next sorting run. The data retrieved might include the number of each denomination of note processed and the total deposit amount for comparison with the deposit thought to have been made by an individual retail store or associated with an individual teller's collections.
The present invention eliminates the need for individual batch feedings of stacks of currency. With the present invention, individual batch runs of currency can be consolidated into a much larger batch with accounting subsets, such as the single currency stack examples given above, delineated by separator cards with special features. As a result, currency relating to individual accounts can be stacked, without the need for bundling, to make up a much larger batch of currency to be processed. This step can be performed before the currency is even shipped to a central processing location. For example, individual tellers' shift collections for a single branch bank can be stacked into one single batch of currency with each teller's shift account separated by separator cards. Each separator card can be encoded with detailed account information about the stack of currency with which it is associated, or bar code information from the separator card can be identified to the account information of the accompanying stack of currency. The entire batch can now be transported to a central banking location or processing facility. When the currency, now in a large batch, arrives at the processing facility, the currency processing machine operator can load the entire batch into the currency processing machine in one step, rather than loading each teller's account individually. Data assimilated regarding each accounting subset can also be obtained continuously and compared with the detailed account information encoded on or identified to the separator cards without stopping the machine between each currency batch feed. As a result, the proposed invention greatly increases both security and labor savings for high-volume currency sorting operations by eliminating steps in the currency processing system.
Critical goals of this invention include the use of separator cards which a currency processing machine can both easily distinguish from currency and readily
Kayani Sohail
Schild Jeffrey Wayne
Cahoon Colin P.
Carstens Yee & Cahoon LLP
Currency Systems International
Patel Jayanti K.
LandOfFree
Method for semi-continuous currency processing using... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for semi-continuous currency processing using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for semi-continuous currency processing using... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3323955