Method for selectively coupling layers of a stator in a...

Electrical generator or motor structure – Dynamoelectric – Rotary

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C310S156030, C310S254100, C310S268000

Reexamination Certificate

active

06181048

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to electric motor/generators and, more specifically, to a permanent magnet, axial field motor/generator.
2. Description of the Related Art
An electric motor, which is a machine for converting current into motion, typically includes a rotor that rotates within a stator in response to a magnetic field. In a permanent magnet motor, the rotor or stator, typically the stator, includes one or more permanent magnets that generate a magnetic field. Permanent magnets may be made of ferrous metals or ferroceramic materials. Because the machine may also be used to convert motion into electric current, the machine is often referred to in the art as a motor/generator or a dynamo. Therefore, although the term “motor” is used herein for convenience, it should be understood that the same machine may be used as a generator.
The rotor or stator of a permanent magnet motor, typically the rotor, includes conductors, such as copper wire, wound around a form. These windings typically have numerous turns of the wire in order to maximize the magnitude of the magnetic field.
In certain permanent magnet motors, the stator includes a metal casing that holds two or more magnets and completes the magnetic circuit between them. The casing typically comprises metal plates or laminations to minimize eddy currents. Increasing the amount of metal in the casing lowers the reluctance of the circuit, thereby increasing the proportion of magnetic flux in the gaps between the magnet poles through which the rotor windings move.
Common motor magnet materials include iron, an aluminum-nickel-cobalt alloy known as Alnico, and rare-earth materials, such as a samarium-cobalt alloy. These materials provide a strong magnetic field but are quite heavy.
Motor magnets commonly must be magnetized in-place, i.e., after they have been assembled into the metal motor casing, to minimize demagnetization upon assembly. If a magnet is removed from the casing (or inserted into it), the act of removing (or inserting) it generally demagnetizes it to some extent. Replacing the magnet would result in diminished performance. To minimize demagnetization, a metal “keeper” may temporarily be attached to a magnet prior to mounting it in a motor or other device.
Practitioners in the art have developed axial field motors having magnets disposed on a rotor with their fields aligned parallel to the axis of rotation of the motor. Axial field motors do not require heavy metal casings to contain the field. Practitioners in the art have developed small axial field motors that include economical ferroceramic magnets. Unlike rare earth magnets, ferroceramic magnets can readily be magnetized into multiple poles because they have a relative permeability (“&mgr;”) on the order of 1. (Permeability is defined as the ratio between the magnetic field density (B) of a material to its magnetic field intensity (H). Air, by definition, has a relative permeability of 1.) In certain such motors, each rotor disc is magnetized into multiple sector-shaped poles. Each sector has a polarity opposite that of an adjacent sector, and each sector is polarized through the thickness of the disc. The rotor is disposed adjacent to the stator on a common axis. The stator of such a motor typically consists of multiple toroidal windings. The magnetic field through which the windings pass is concentrated between two adjacent sectors of the same disc.
Motors having ferroceramic magnets produce lower torque than motors having magnets made of high-permeability materials, such as iron, Alnico and rare earth materials, because ferroceramic magnets exhibit a lower flux density. To obtain an increase in torque, the rotor may have two disc magnets, one on each side of the stator. Half of each toroidal winding of the stator thus passes through the magnetic field generated by one magnet of the rotor, and the other half of the winding passes through the magnetic field generated by the other rotor magnet. Nevertheless, the density of the flux through which each winding half moves is limited to that produced by the disc magnet to which it is closest. The use of multiple pole ferroceramic magnets is therefore largely confined to small, low-torque motors, such as stepper-type motors used in disk drives.
It would be desirable to provide an economical motor that has a high power-to-weight or efficiency ratio. These needs are clearly expressed in the art and are satisfied by the present invention in the manner described below.
SUMMARY OF THE INVENTION
The present invention pertains to an axial field motor/generator having a rotor that includes at least three annular discs magnetized to provide multiple sector-shaped poles. Each sector has a polarity opposite that of an adjacent sector, and each sector is polarized through the thickness of the disc. These magnets may be made of any suitable, relatively low magnetic permeability (“&mgr;”) material, such as a ferroceramic material having a permeability of no more than about 100 times the permeability of air. The poles of each magnet are aligned with opposite poles of each adjacent magnet. The magnetic flux thus is oriented axially through aligned sectors of adjacent magnets. Metal members adjacent to the outermost two magnets contain the flux in the rotor. Thus, conceptually, the flux follows a circular serpentine path through and around the rotor.
The magnets are polarized into a plurality of sectors, which minimizes demagnetization prior to assembly of the rotor. Thus, the magnets need not be magnetized in-place, i.e., after assembly, as in certain conventional motors. Moreover, it is not necessary to use a keeper tool to maintain magnetization during assembly.
The motor/generator also has a stator that includes a layer of conductors or windings between each two adjacent rotor magnets. Each layer may have multiple conductor phase assemblies, each providing one of a plurality of phases. Although the conductors may be formed of conventional wire having a round, uniform cross-section, they may alternatively be formed of conductors having a tapered cross-section that corresponds to the taper of the sectors. This type of cross-section maximizes the density of the conductor in the gap between axially adjacent poles and, thus, the current capacity of the conductor. The cross-sectional shape may be rectangular to further maximize conductor density.
The terms “rotor” and “stator,” as defined herein, are used for purposes of convenience to mean only that the rotor and stator rotate with respect to one another. The terms are not intended to limit the invention to a structure in which the rotor rotates and the stator is stationary with respect to the earth or other frame of reference. For example, the rotor may be fixedly connected to a vehicle body, and the stator may be fixedly connected at its periphery to a tire, whereby the rotation of the stator and its tire relative to the rotor and the vehicle body propels the vehicle.
Although the magnets do not have as high a magnetic flux density (“B”) as rare earth magnets and other high-permeability magnets, they have a higher maximum energy product. Energy product is the product of flux density and magnetization force or coercivity (“H”) at the point along the magnet's characteristic B-H plot at which the motor/generator is operating. The magnets are thus preferably spaced apart from one another by a distance corresponding to the maximum energy product.
The inclusion of three or more rotor magnets in the manner described above more than offsets the negative effect of lower flux density on motor efficiency. Each point or magnetic domain within each center magnet, i.e., a magnet other than the two outer magnets, contributes equally to the magnetic flux through which the stator conductors pass. Flux emanating from domains immediately to either side of the midplane of a center magnet thus has a shorter gap to traverse than flux emanating from corresponding domains in a conventional axial field motor. In other words, both

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for selectively coupling layers of a stator in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for selectively coupling layers of a stator in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for selectively coupling layers of a stator in a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2482761

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.