Method for selective inactivation of viral replication

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving virus or bacteriophage

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S006120, C435S320100, C435S455000, C435S456000, C536S023100, C536S024500

Reexamination Certificate

active

06824976

ABSTRACT:

BACKGROUND OF THE INVENTION
A variety of agents are presently used to combat viral infection. These agents include interferon, which is a naturally-occurring protein having some efficacy in combat of certain selected viral diseases. In addition, agents such as AZT are used in the combat of an immunodeficiency disease, referred to commonly as AIDS, caused by the virus HIV-1.
Drug and Market Development, Vol 3. No. 9, pp. 174-180 (Feb. 15, 1993), describes antiviral drug development.
It states:
The difficulties encountered in drug treatment of most infections pale when compared to viral infections. For example, it is at least theoretically (and often in practice) possible to attack a bacterium without harming the host. Unlike bacteria however, viruses replicate inside cells and utilize cellular machinery of the host for replication. As a result, development of antiviral therapeutics often represents a compromise between preferable killing, or at least arresting replication of, the virus, and not harming the host, or at worst, doing only minimal damage which can be justified by the potential gain.
It states that viral specific events can be targeted including:
Virus attachment to cell membranes and penetration in cells;
Virus uncoating;
Virus nucleic acid synthesis;
Viral protein synthesis and maturation; and
Assembly and release of infectious particles.
Specifically with regard to viral protein synthesis the authors state:
In contrast to nucleic acid synthesis, viral protein synthesis utilizes host ribosomes (ribosomes are cell structures essential for translation of mRNA into protein) and mostly host-derived supplementary factors. As a result, protein synthesis inhibitors, in general, are as likely to exhibit host toxicity as they are to exert antiviral effects. Antisense oligonucleotides, however, may be of value in specifically inhibiting viral protein synthesis. Briefly, antisense oligonucleotides are short DNA fragments that are complementary to mRNA (sense strands) and can prevent mRNA-directed protein synthesis by binding to mRNA. RNA molecules have also been constructed to contain sequences complementary to those of sense DNA strands (and their corresponding mRNA). Although antisense constructs have been shown to inhibit viral protein synthesis in vitro, their effectiveness in vivo has not yet been conclusively demonstrated. Among others, current challenges for oligonucleotide therapeutics include delivery to virus-infected cells, the stability of such molecules in vivo and distribution throughout the body.
Ribosome inactivators represent another approach for viral protein synthesis inhibition. GLQ223 (Genelabs; Redwood City, Calif.) is a ribosome inactivator undergoing clinical testing (GLQ223 is a purified preparation of trichosanthin (cucumber plant derivative)). A ribosome inactivator would interfere with cellular translation machinery, effectively preventing generation of new viral proteins.
Sonenburg, 2 The New Biologist 402, 1990 describes virus host interactions at the level of initiation of translation and states that two initiation factors eIF-2 and eIF-4F play significant roles in a number of virus host interactions. He states “[a]n understanding of the mechanisms responsible for these virus-host interactions is of great signifigance for future therapeutic approaches to viral disease.”
SUMMARY OF THE INVENTION
The present invention relates to methods for screening for agents which are effective in inhibiting the translational system used by a virus during infection of a host cell. The screening method utilizes a protocol in which potentially useful agents are brought into contact with appropriate macromolecular sequences, e.g., viral nucleic acid sequences or relevant protein sequences, in order to determine whether those agents can specifically inhibit use of those sequences. Viruses use a variety of methods for taking over a host translational system, and it is these methods that can be specifically targeted by methods of the present invention. Once isolated, the viral specific agents can be formulated in therapeutic products (or even prophylactic products) in pharmaceutically acceptable formulations, and used for specific treatment of viral disease with little or no effect on uninfected virus host cells.
Specifically, in one aspect, applicant provides a screening method in which a target virus nucleic acid sequence or domain responsible for preferential translation of viral RNA over host RNA is used in a selection protocol. While several specific examples of such viral nucleic acid sequences or domains are provided below in the form of IRES elements, 5′-untranslated regions containing specific viral sequences, and upstream open-reading frames containing such sequences, these are used only to exemplify a general method by which other virus nucleic acid sequences can be used in such protocols. Use of any one of these virus nucleic acid sequences within a cell translation system provides a means by which anti-viral agents can be discovered.
Applicant notes that the claimed method does not include targeting of agents to viral sequences involved in frame shifting (which is not a target nucleic acid that is preferentially translated as defined herein), such as described by Dinman and Wickner, 66
J. Virol
. 3669, 1992; Jacke et al., 331
Nature
280, 1988; Wilson et al., 55
Cell
1159, 1988; Inglis and Brierly, WO 90/14422; and Goodchild and Zamecnik, WO 87/07300.
Any agent which binds to such viral nucleic acid and/or which causes a significant reduction in translation of viral message is potentially useful in the present invention. Such agents can be screened to ensure that they are specific to viral translation systems and have no effect on uninfected host cell translation systems such that the agent can be used in a therapeutic or prophylactic manner. If such agents have some effect on host cell systems they may still be useful in therapeutic treatment, particularly in those diseases which are life threatening, such as HIV-1 infection.
Such agents may interact either directly with the target viral nucleic acid, for example, by hybridization with the nucleic acid, e.g., antisense RNA or DNA, or may bind or interact with other components of the viral translation system (i.e., those host and/or viral components whether nucleic acid and/or protein which allow translation of viral mRNA to occur in vivo), such as proteins used by the virus to promote translation of its RNA, rather than host RNA involved in that system, e.g., antibodies. Additionally, agents may include any nucleic acid molecule which binds to viral or cellular components which otherwise would partake in preferential viral nucleic acid translation, but upon binding said nucleic acid molecule become unable to be preferentially translated. However, while antisense nucleic acid and antibodies may exemplify aspects of the present invention, applicant is particularly concerned with identification of agents of low molecular weight (less than 10,000, preferably less than 5,000, and most preferably less than 1,000), which can be more readily formulated as useful antiviral agents. Thus, in a preferred embodiment, the invention features such low molecular weight agents, and not antisense molecules or antibodies.
Thus, in a first aspect the invention features a method for screening for an antiviral agent. The method includes providing a target viral translation nucleic acid sequence which allows preferential translation of a viral RNA compared to a host RNA under virus infection conditions. The method may involve a simple assay to detect binding of an agent to this nucleic acid Preferably, however, the target viral translation nucleic acid sequence is translationally linked to RNA encoding a reporter polypeptide. The method then further includes contacting the target viral translation nucleic acid squence with a potential antiviral agent under conditions which allow synthesis of the reporter polypeptide in the absence of the agent. The method finally includes determining whether the agent red

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for selective inactivation of viral replication does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for selective inactivation of viral replication, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for selective inactivation of viral replication will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3343749

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.