Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Biological or biochemical
Reexamination Certificate
1996-01-26
2001-02-06
Celsa, Bennett (Department: 1618)
Data processing: measuring, calibrating, or testing
Measurement system in a specific environment
Biological or biochemical
C702S022000, C702S030000, C435S091500
Reexamination Certificate
active
06185506
ABSTRACT:
BACKGROUND OF THE INVENTION
A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
1. Field of the Invention
This invention relates to the field of combinatorial chemistry screening libraries and more specifically to: 1) a method of validating the molecular structural descriptors necessary for designing an optimal combinatorial screening library; 2) a method of designing an optimal combinatorial chemistries; and 4) methods of following up and optimizing identified leads. The libraries designed by the method are constructed to ensure that an optimal structural diversity of compounds is represented. In particular, the invention describes the design of libraries of small molecules to be used for pharmacological testing.
2. Description of Related Art
Statement of the Problem
While the present invention is discussed with detailed reference to the search for and identification of pharmacologically useful chemical compounds, the invention is applicable to any attempt to search for and identify chemical compounds which have some desired physical or chemical characteristic(s). The broader teachings of this invention are easily recognized if a different functional utility or useful property describing other chemical systems is substituted below for the term “biological activity”.
Starting with the serendipitous discovery of penicillin by Fleming and the subsequent directed searches for additional antibiotics by Waksman and Dubos, the field of drug discovery during the post World War II era has been driven by the belief that nature would provide many needed drugs if only a careful and diligent search for them was conducted. Consequently, pharmaceutical companies understood massive screening programs which tested samples of natural products (typically isolated from soil or plants) for their biological properties. In a parallel effort to increase the effectiveness of the discovered “lead” compounds, medicinal chemists learned to synthesize derivatives and analogs of the compounds. Over the years, as biochemists identified new enzymes and biological reactions, large scale screening continued as compounds were tested for biological activity in an ever rapidly expanding number of biochemical pathways. However, proportionately fewer and fewer lead compounds possessing a desired therapeutic activity have been discovered. In an attempt to extend the range of compounds available for testing, during the last few years the search for unique biological materials has been extended to all corners of the earth including sources from both the topical rain forests and the ocean. Despite these and other efforts, it is estimated that discovery and development of each new drug still takes about 12 years and costs on the order of 350 million dollars.
Beginning approximately twenty-five years ago, as bioscientists learned more about the chemical and sterochemical requirements for biological interactions, a variety of semi-empirical, theoretical, and quantitative approaches to drug design were developed. These approaches were accelerated by the availability of powerful computers to perform computational chemistry. It was hoped that the era of “rational drug design” would shorten the time between significant discoveries and also provide an approach to discovering compounds active in biological pathways for which no drugs had yet been discovered. In large part, this work was based on the accumulated observation of medicinal chemists that compounds which were structurally similar also possessed similar biological activities. While significant strides were made using this approach, it too, like the mass screening programs, failed to provide a solution to the problem of rapidly discovering new compounds with activities in the ever increasing number of biological pathways being elucidated by modern biotechnology.
During the past four or five years, a revised screening approach has been under development which, it was hoped, would accelerate the pace of drug discovery. In fact, the approach has been remarkably successful and represents one of the most active areas in biotechnology today. This new approach utilizes combinatorial libraries against which biological assays are screened. Combinatorial libraries are collections of molecules generated by synthetic pathways in which either: 1) two groups of reactants are combined to form products; or 2) one or more positions on core molecules are substituted by a different chemical constituent/moiety selected from a large number of possible constituents.
Two fundamental ideas underlie combinatorial screening libraries. The first idea, common to all drug research, is that somewhere amongst the diversity of all possible chemical structures there exist molecules which have the appropriate shape and binding properties to interact with any biological system. The second idea is the belief that synthesizing and testing many molecules in parallel is a more efficient way (in terms of time and cost) to find a molecule possessing a desired activity that the random testing of compounds, no matter what their source. In the broadest context, these ideas require that, since the binding requirements of a ligand to the biological systems under study (enzymes, membranes, receptors, antibodies, whole cell preparations, genetic materials, etc.) are not known, the screened compounds should possess as broad a range of characteristics (chemical and physical) as possible in order to increase the likelihood of finding one that is appropriate for any given biological target. This requirement for a screening library is reflected in the term “diversity”—essentially a way of suggesting that the library should contain a great a dissimilarity of compounds as possible.
However, as is immediately apparent, a combinatorial approach to synthesizing molecules generates an immense number of compounds many with a high degree of structural similarity. In fact, the number of compounds synthetically accessible with known organic reactions exceeds by many order to magnitude the numbers which can actually be made and tested. One area where these ideas were first explored is in the design of peptide libraries. For a library of five member peptides synthesized using the 20 naturally occurring amino acids, 3,200,000, (20
5
) different peptides may be constructed. The number of combinatorial possibilities increases even more dramatically when non-peptide combinatorial libraries are considered. With non-peptide libraries, the whole synthetic chemical universe of combinatorial possibilities is available. Library sizes ranging from 5×10
7
to 4×10
12
molecules are now being discussed. The enormous universe of chemical compounds is both a blessing and a curse to medicinal chemists seeking new drugs. On the one hand, if a molecule exists with the desired biological activity, it should be included in the chemical universe. On the other hand, it may be impossible to find. Thus, the principal focus of recent efforts has been to define smaller screening subsets of molecules derivable from accessible combinatorial syntheses without losing the inherent diversity of an accessible universe.
To date, in order to narrow the focus of the search and reduce the number of compounds to be screened, attention has been directed to designing biologically specific libraries. Thus, many combinatorial screening libraries existing in the prior art have been designed based on prior knowledge about a particular biological system such as a known pharmacophore (a geometric arrangement of structural fragments abstracted from molecular structures known to have activity). Even with this knowledge, molecules are included in these prior art libraries based on intuition—“seat of the pants” estimations of likely similarity based on an int
Clark Robert D.
Cramer Richard D.
Ferguson Allan M.
Patterson David E.
Celsa Bennett
Ricigliano Joseph W.
Tripos, Inc.
Weinberger Laurence A.
LandOfFree
Method for selecting an optimally diverse library of small... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for selecting an optimally diverse library of small..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for selecting an optimally diverse library of small... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2559836