Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...
Reexamination Certificate
2000-05-24
2004-02-10
Ketter, James (Department: 1636)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving antigen-antibody binding, specific binding protein...
C435S478000
Reexamination Certificate
active
06689573
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a novel method for screening and identifying restriction endonucleases based on the proximity of their genes to the genes of their cognate methylases. A similar method for identifying isoschizomers of known endonucleases, which isoschizomers possess a desired physical property is also provided. Related methods for producing and cloning such endonucleases or other cytotoxic proteins are provided, as are several novel
M. jannaschii
restriction endonucleases.
Nucleases are a class of enzymes which degrade or cut single- or double-stranded DNA. Restriction endonucleases are an important class of nucleases which recognize and bind to particular sequences of nucleotides (the ‘recognition sequence’) along the DNA molecule. Once bound, they cleave both strands of the molecule within, or to one side of, the recognition sequence. Different restriction endonucleases recognize different recognition sequences. Over two hundred restriction endonucleases with unique specificities have been identified among the many hundreds of bacterial and archaeal species that have been examined to date. Some have also been found to be encoded by eukaryotic viruses.
It is thought that in nature, restriction endonucleases, which comprise the first component of what are commonly referred to as restriction-modification (“RM”) systems, play a protective role in the welfare of the host cell. They enable bacteria and archaea to resist infection by foreign DNA molecules like viruses and plasmids that would otherwise destroy or parasitize them. They impart resistance by cleaving invading foreign DNA molecules when the appropriate recognition sequence is present. The cleavage that takes place disables many of the infecting genes and renders the DNA susceptible to further degradation by non-specific endonucleases.
A second component of these bacterial and archaeal protective systems are the modification methylases. These enzymes are complementary to the restriction endonucleases and they provide the means by which bacteria and archaea are able to protect their own DNA from cleavage and distinguish it from foreign, infecting DNA. Usually, modification methylases recognize and bind to the same nucleotide recognition sequence as the corresponding restriction endonuclease, but instead of cleaving the DNA, they chemically modify one or other of the nucleotides within the sequence by the addition of a methyl group. Following methylation, the recognition sequence is no longer bound or cleaved by the restriction endonuclease. The DNA of the host cell is always fully modified by virtue of the activity of the modification methylase. It is therefore completely insensitive to the presence of the endogenous restriction endonuclease. It is only unmodified, and therefore identifiably foreign DNA, that is sensitive to restriction endonuclease recognition and cleavage.
There are three kinds of restriction systems. The Type I systems are complex. They recognize specific sequences, but cleave randomly with respect to that sequence (Bickle, T. A., Nucleases [eds. Linn, S. M., Lloyd, S. L., and Roberts, R. J.], Cold Spring Harbor Laboratory Press, pp. 89-109, (1993)). The Type III enzymes, of which only five have been characterized biochemically, recognize specific sequences, cleave at a precise point away from that sequence, but rarely give complete digestion (ibid). Neither of these two kinds of systems are suitable for genetic engineering, which is the sole province of the Type II systems. The latter recognize a specific sequence and cleave precisely either within or very close to that sequence. They typically only require Mg++ for their action.
The traditional approaches to screening for restriction endonucleases, pioneered by Roberts et al. and others in the early to mid 1970's (e.g. Smith, H. O. and Wilcox, K. W.,
J. Mol. Biol
. 51:379-391 (1970); Kelly, T. J. Jr. and Smith, H. O.,
J. Mol. Biol
. 51:393-409, (1970); Middleton, J. H. et al.,
J. Virol
. 10:42-50 (1972); and Roberts, R. J. et al.,
J. Mol. Biol
. 91:121-123, (1975)), was to grow small cultures of individual strains, prepare cell extracts and then test the crude cell extracts for their ability to produce specific fragments on small DNA molecules (see Schildkraut, I.S., “Screening for and Characterizing Restriction Endonucleases”, in Genetic Engineering, Principles and Methods, Vol. 6, pp. 117-140, Plenum Press (1984)). Using this approach, about 12,000 strains have been screened worldwide to yield the current harvest of almost 3,000 restriction endonucleases (Roberts, R. J. and Macelis, D.,
Nucl. Acids. Res
. 26:338-350 (1998)). Roughly, one in four of all strains examined, using a biochemical approach, shows the presence of a Type II restriction enzyme.
Beginning in 1978, investigators in a number of laboratories set about to clone the genes for some of the Type II restriction systems (Szomolanyi, I. et al.,
Gene
10:219-225 (1980)). This promised to be quite a successful enterprise because of the ease of selecting for methylase genes (Mann, M. B. et al.,
Gene
3:97-112 (1978); Kiss, A. M. et al.,
Nucl. Acids. Res
. 13:6403-6420 (1985)). Basically, if an organism is known to contain a restriction system, then a shotgun of the organism's DNA can be made and the resulting mixed population of plasmids can be grown as a single, mixed culture. This mixed population of plasmid DNA's is then isolated, cleaved in vitro with the restriction enzyme, and only those plasmids that have both received and expressed the corresponding methylase gene, will survive the digestion. Upon retransformation, any cells that grow are greatly enriched for the presence of the methylase gene. Because the methylase and restriction enzyme genes are usually adjacent, this method can yield both genes. Sometimes a single round of selection is sufficient, but routinely two rounds of selection yield the required methylase gene with high efficiency. Only when expression of the methylase gene is poor or coexpression of flanking sequences is lethal does the selection fail. Various tricks and alternative cloning methods have been developed to overcome such limitations (e.g. Brooks, J. E. et al.,
Nucl. Acids. Res
. 17:979-997 (1989); Wilson, G. G. and Meda, M. M., U.S. Pat. No. 5,179,015 (1993)).
As the skilled artisan will appreciate restriction endonucleases are cytotoxic products. In general, genes encoding cytotoxic products are extremely difficult to clone, even when care has been taken to remove sequences that might enable their expression in the plasmid host. Generation of their mRNA can be due to ‘read-through’ transcription that originates at some point on the plasmid other than the toxic locus. Absent an identifiable Shine-Dalgarno (SD) consensus sequence upstream of an initiator codon, translation of the toxic protein may be initiated by a cryptic ribosome binding site (RBS) (by definition, not fitting the SD consensus, and usually non-obvious), or abortive termination of an upstream ribosome-mRNA complex. Long mRNA concatamers can be generated from plasmid templates via ‘rolling circle transcription’. This may increase and/or stabilize the mRNA of the toxic allele, so that even rare translational initiation events can generate enough protein to impact cell viability negatively.
Attempting to clone a toxic gene into a plasmid designed to facilitate high expression is, in many cases, futile. Transcriptional repressors are often employed to down-regulate expression, and typically act by interfering with productive transcription. This type of regulation is dependent upon: 1) the molar ratio of repressor protein to its cognate binding site (operator), and 2) the affinity of the repressor protein for the operator sequence. In no case is it reasonable to expect 100% of the operator sites to be occupied 100% of the time. Thus, some expression of a cloned gene is unavoidable, creating a powerful selective pressure against cells that faithfully replicate the lethal gene. Those cells in which expressio
Byrd Devon R.
Morgan Richard D.
Noren Christopher J.
Patti Jay
Roberts Richard J.
Katcheves Konstantina
Ketter James
New England Biolabs Inc.
Strimpel Harriet M.
Williams Gregory D.
LandOfFree
Method for screening restriction endonucleases does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for screening restriction endonucleases, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for screening restriction endonucleases will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3342256