Method for reworking metal layers on integrated circuit bond...

Semiconductor device manufacturing: process – Repair or restoration

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06534327

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention is related in general to the field of semiconductor devices and processes and more specifically to a method for reworking metal layers misprocessed on bond pads of integrated circuits having copper metallization.
DESCRIPTION OF THE RELATED ART
In integrated circuits (IC) technology, pure or doped aluminum has been the metallization of choice for interconnection and bond pads for more than four decades. Main advantages of aluminum include ease of deposition and patterning. Further, the technology of bonding wires made of gold, copper, or aluminum to the aluminum bond pads has been developed to a high level of automation, miniaturization, and reliability. Examples of the high technical standard of wire bonding to aluminum can be found in U.S. Pat. No. 5,455,195, issued on Oct. 3, 1995 (Ramsey et al., “Method for Obtaining Metallurgical Stability in Integrated Circuit Conductive Bonds”); U.S. Pat. No. 5,244,140, issued on Sep. 14, 1993 (Ramsey et al., “Ultrasonic Bonding Process Beyond 125 kHz”); U.S. Pat. No. 5,201,454, issued on Apr. 13, 1993 (Alfaro et al., “Process for Enhanced Intermetallic Growth in IC Interconnections”); U.S. Pat. No. and 5,023,697, issued on Jun. 11, 1991 (Tsumura, “Semiconductor Device with Copper Wire Ball Bonding”).
In the continuing trend to miniaturize the ICs, the RC time constant of the interconnection between active circuit elements increasingly dominates the achievable IC speed-power product. Consequently, the relatively high resistivity of the interconnecting aluminum now appears inferior to the lower resistivity of metals such as copper. Further, the pronounced sensitivity of aluminum to electromigration is becoming a serious obstacle. Consequently, there is now a strong drive in the semiconductor industry to employ copper as the preferred interconnecting metal, based on its higher electrical conductivity and lower electromigration sensitivity. From the standpoint of the mature aluminum interconnection technology, however, this shift to copper is a significant technological challenge.
Copper has to be shielded from diffusing into the silicon base material of the ICs in order to protect the circuits from the carrier lifetime killing characteristic of copper atoms positioned in the silicon lattice. For bond pads made of copper, the formation of thin copper(I)oxide films during the manufacturing process flow has to be prevented, since these films severely inhibit reliable attachment of bonding wires, especially for conventional gold-wire ball bonding. In contrast to aluminum oxide films overlying metallic aluminum, copper oxide films overlying metallic copper cannot easily be broken by a combination of thermocompression and ultrasonic energy applied in the bonding process. As further difficulty, bare copper bond pads are susceptible to corrosion.
In order to overcome these problems, a process has been disclosed to cap the clean copper bond pad with a layer of aluminum and thus re-construct the traditional situation of an aluminum pad to be bonded by conventional gold-wire ball bonding. A suitable bonding process is described in U.S. Pat. No. 5,785,236, issued on Jul. 28, 1998 (Cheung et al., “Advanced Copper Interconnect System that is Compatible with Existing IC Wire Bonding Technology”). The described approach, however, has several shortcomings.
First, the fabrication cost of the aluminum cap is higher than desired, since the process requires additional steps for depositing metal, patterning, etching, and cleaning. Second, the cap must be thick enough to prevent copper from diffusing through the cap metal and possibly poisoning the IC transistors. Third, the aluminum used for the cap is soft and thus gets severely damaged by the markings of the multiprobe contacts in electrical testing. This damage, in turn, becomes so dominant in the ever decreasing size of the bond pads that the subsequent ball bond attachment is no longer reliable.
A low-cost structure and method for capping the copper bond pads of copper-metallized ICs has been disclosed on U.S. patent application Ser. No. 60/183,405, filed on Feb. 18, 2000. The present invention is related to that application. The structure provides a metal layer electrolessly plated onto the copper, which impedes the up-diffusion of copper. Of several possibilities, nickel is a preferred choice. This layer is topped by a bondable metal layer, which also impedes the up-diffusion of the barrier metal. Of several possibilities, gold is a preferred choice. In a variation of this sequence of metal layers, a second barrier layer such as palladium is electrolessly deposited on the nickel, blocking its up-diffusion, and then followed by a bondable metal such as gold. Metallurgical connections stacked cap of layers can then be performed by conventional wire bonding.
It is difficult, though, to plate these bond pad caps uniformly in electroless deposition systems, because electroless deposition is affected by local reactant concentrations and by the agitation velocities of the aqueous solution. Deposition depletes the reactants in areas around the bond pads. Increasing the agitation of the solution only exacerbates the deposition nonuniformity, which is influenced by the flow direction of the solution. Also, a few bond pads may not receive any metal deposition. The problem is further complicated when a whole batch of wafers is to be plated simultaneously in order to reduce cost, since known control methods have been applied only to process single wafers under applied electrical bias. See, for example, U.S. Pat. No. 5,024,746, issued Jun. U.S. Pat. No. 18, 1991, and 4,931,149, issued Jun. 5, 1990 (Stierman et al., “Fixture and a Method for Plating Contact Bumps for Integrated Circuits”).
An urgent need has arisen for a reliable method of reworking metal caps over copper bond pads which combines minimum fabrication cost with maximum correction control of the IC structure. The reworking method should be flexible enough to be applied for different IC product families and a wide spectrum of design and process variations. Preferably, these innovations should be accomplished while shortening production cycle time and increasing throughput, and without the need of expensive additional manufacturing equipment.
SUMMARY OF THE INVENTION
The present invention discloses a method for reworking integrated circuit (IC) wafers having copper-metallized bond pads exposed in protective overcoat openings and one or more bondable metal layers deposited onto the bond pads by a technology which may produce some parts with off-spec or missing depositions. After identifying the wafer with off-spec metal layers, a layer of glass buffer is deposited over those wafers, which also fill any missing depositions at least partially. The glass-covered surface is then chemically-mechanically polished until the off-spec metal layers and at least portion of the protective overcoat are removed, without damaging the copper metallization. Finally, a fresh layer of protective overcoat is deposited, selectively opened to expose the bond pads, and provided anew with one or more bondable metal layers.
The slurry for the chemical-mechanical polishing contains oxidizing or hydroxylating agents as well as mechanical polishing components for metals which are not readily oxidized. In order to minimize undesired scratches of the underlying copper or dielectric layers, a combination of buffers and soft poromeric pads is used. Alternatively, organic buffer layers can be used instead of the glass buffer.
The present invention is related to high density and high speed ICs with copper interconnecting metallization, especially those having high numbers of metallized inputs/outputs, or “bond pads”. These circuits can be found in many device families such as processors, digital and analog devices, logic devices, high frequency and high power devices, and in both large and small area chip categories.
It is an aspect of the present invention to increase the process yield of wafer fabrication, since it provides a low-cost rewo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for reworking metal layers on integrated circuit bond... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for reworking metal layers on integrated circuit bond..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for reworking metal layers on integrated circuit bond... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3023013

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.