Method for residual stress relief and retained austenite...

Metal treatment – Process of modifying or maintaining internal physical... – Magnetic materials

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C148S565000, C148S579000, C148S679000, C148S688000, C335S284000

Reexamination Certificate

active

06773513

ABSTRACT:

CROSS-REFERENCES TO RELATED APPLICATIONS
Not Applicable.
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to the use of a magnetic field to affect microstructural changes in a metallic material, first, by relieving residual stress at ambient or cryogenic temperatures and, second, in the case of ferrous alloys, by reversing retained austenite stabilization.
2. Description of the Related Art
Metal working procedures such as casting, forging, welding, heat-treating, and forming introduce residual stresses into components.
FIG. 1
is a schematic describing the evolution of residual stresses and the unfavorable effects of residual stresses in components manufactured using prior art processes. Undesirable residual stresses in components are a major issue that many industries have to deal with. For example, the issues can be distortion during machining, cracking before tempering (stress relieving thermal treatments), or accelerated corrosion while in use.
Residual stresses are non-applied stress resulting from a constrained volume change. In metals, these stresses are elastic and are typically the direct result of elastic and plastic strains due to thermal gradient and phase transformation strains in addition to crystallographic anisotropy effects. Various stress relieving processes can cause movement of dislocations and relieve residual stresses through enhancing the mobility of the dislocation structure. This can lead to their rearrangement, multiplication, or annihilation, thereby altering the residual stress profile in a sample. Abatement of tensile residual stresses is very beneficial from both a component design and life expectancy viewpoint, since existing residual stresses typically reduce the design stresses and fatigue life. Residual stress relief is known by way of heat treatment in an oven, mechanical vibration, cryogenic treatment, or laser or annealing. U.S. Pat. Nos. 6,144,544 and 4,873,605, and Wu et al. in “Micromechanism of residual stress reduction by low frequency alternating magnetic field treatment”, Materials Science and Engineering A328 133-136, 2002, also describe residual stress relief through the use of pulsed magnetic fields. However, these pulsed magnetic fields are generated by resistive electromagnet systems that rely on capacitors or other circuitry to pulse the magnetic field. Thus, these resistive magnet systems use large amounts of energy such that the processes are economically unattractive.
The use of either ac or dc electric or magnetic fields under certain exposure times and field intensities has also been proposed to partially repair high cycle fatigue damage as evidenced in some extension of fatigue life (see, for example, Conrad et al., Mater. Sci. Eng. A145, 1, 1991; Zhao et al., Eng. Fract. Mech. 46, 347, 1993; Fahmy et al., Scripta Mater. 38, 1355, 1998; Bhat et al., Int. J. Fatigue, 15, 193-197, 1993; and Bao-Tong et al., Scripta Mater. 40, 767, 1999). However, certain test conditions reported resulted in an opposite effect, i.e., a reduction in fatigue life occurred. This effect was not explained. The hypothesis suggested for the life improvement conditions was that accumulated fatigue damage (before the crack initiation stage) was eliminated or reduced during application of the electric or magnetic fields. The damage relieved in the early stages of fatigue in metals is the irreversible cyclic plastic deformation. This damage is observed in TEM studies of fatigued specimens as a developing dislocation substructure. The terms electroplasticity (see, H. Conrad and A. F. Sprecher, in Dislocations in Solids, ed. F. R. N. Nabarro, vol. 8, Elsevier, Amsterdam 1989) and magnetoplasticity (see, Alshits et al., J. Alloy Compd. 211/212, 549, 1994) have been presented in prior research studies where the presence of an electric current or magnetic fields appeared to reduce the plastic deformation resistance of metals resulting in the movement of dislocations without an external load.
Steel heat-treating processes can also produce retained austenite in a workpiece. Retained austenite is deleterious in many applications because this phase can transform subsequently upon the application of an external stress promoting high carbon martensite formation. This material is very brittle and can lead to catastrophic failure in service. Also, in high performance applications, where high-speed bearings are machined to very high tolerances, if the austenite transforms under load, seizing can occur and cause major system damage as a result of a large positive phase transformation volume strain (~4%).
Various industrial processes have been proposed to minimize retained austenite.
FIG. 2
is a schematic showing two prior art processes for producing steel with minimal amounts of retained austenite. As the carbon level of steels is increased (>~0.5 wt. % carbon), the amount of transformation of austenite to martensite upon quenching is reduced as a result of processes that interfere with the nucleation and growth of the martensite plates that are the preferred microstructure. Typically, the martensite finish temperature, M
F
, is below ambient temperature for these higher carbon alloys and so some untransformed austenite will exist under ambient conditions.
When cooling is resumed after some hold time at ambient temperature, the austenite to martensite transformation does not progress as far to completion as would have been accomplished if no isothermal hold had occurred. The amount of austenite stabilization that results generally is less the closer the isothermal arrest temperature is to the M
S
temperature, or stated a different way, the retained austenite is less when you have less martensite at the arrest temperature. An explanation for this is the fact that formation of the martensite plates leads to accommodating plastic deformation in the surrounding matrix. This can lead to very high dislocation densities in the austenite that can interact with the glissile dislocations in the martensite plate boundary and cause the martensite interface to no longer be mobile which will inhibit further growth of the martensite plate and stabilize the retained austenite.
Dislocation densities on the order of 10
11
-10
12
cm
−2
have been observed in these quenched steels in contrast to dislocation densities of 10
6
-10
8
cm
−2
for annealed microstructures. Subsequent migration of the interstitial carbon atoms to the dislocations (i.e., pinning) will further enhance the stabilization process, which explains why the degree of austenite stabilization is observed to increase to a maximum with time. This pinning of dislocations by carbon in ferrous martensites has been confirmed through internal friction measurements that reveal a Snoek peak in the internal friction intensity versus temperature plot, which occurs as a result of stress-induced movement of carbon atoms.
The presence of retained austenite upon quenching to room temperature is a major heat treatment concern since the heat treater must quickly move the quenched components to an alternate quench facility where cryogenic treatments must be performed to drive the transformation to completion (see prior art process #1 in FIG.
2
). Generally, this additional processing step still leaves a residual amount of retained austenite. Alternately, multiple tempering heat treatments are employed to successively temper the initial martensite and form martensite from the retained austenite upon further cooling that must be re-tempered to transform the new martensite to the ferrite and carbide microstructure (see prior art process #2 in FIG.
2
). The elimination of these additional heat treatment steps would result in energy savings and reduced greenhouse gases. In other prior processes, it has been proposed to control austenite formation by the application of magnetic field gradients to steel (see U.S. Pat. No. 5,885,370) or by the high temperature application of a magnetic field to steel (see U.S. Pat. No. 6,375,760).
Therefore, in view of the well known advantages of stress

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for residual stress relief and retained austenite... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for residual stress relief and retained austenite..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for residual stress relief and retained austenite... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3341223

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.