Method for removing drill cuttings from wellbores and...

Earth boring – well treating – and oil field chemistry – Earth boring – Contains organic component

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C507S101000, C507S103000, C507S118000, C507S120000, C507S112000, C507S113000, C507S114000, C507S115000, C507S902000, C507S903000, C175S066000

Reexamination Certificate

active

06794340

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to drilling fluid compositions and to methods for drilling a subterranean wellbore or borehole. More particularly, this invention relates to compositions and methods for removing drill cuttings from boreholes and also for separating the cuttings from drilling fluids.
2. Description of Relevant Art
Rotary drilling methods employing drilling apparatus having a drill bit and drill stem have long been used to drill wellbores or boreholes in subterranean formations. Drilling fluids or muds are commonly circulated in the well during such drilling to serve a number of functions, including cooling and lubricating the drilling apparatus, counterbalancing the subterranean formation pressure encountered, and removing drill cuttings from the formation out of the wellbore. In removing drill cuttings from the well, drilling fluids suspend the cuttings and carry them to the surface for removal from the well.
Drilling deviated and horizontal wells have become increasingly common in the oil and gas industry. In drilling such wells, gravity causes deposits of drill cuttings, the sizes of which range from microns in diameter to that of common pebbles, and especially fines or smaller sized cuttings, to build up along the lower or bottom side of the wellbore. Such deposits are commonly called “cuttings beds.” As used herein, the term “deviated” with respect to wells shall be understood to include any well at sufficient angle or deviation off of vertical that cuttings beds tend to form during the drilling operation. “Deviated” wells shall be understood to include without limitation “angled,” “high-angled,” “oval,” “eccentric,” “directional” and “horizontal” wells, as those terms are commonly used in the oil and gas industry. The terms “well,” “wellbore” and “borehole” are synonymous as used herein.
The viscosity of a drilling fluid is commonly increased to enhance the fluid's drill cuttings-transport capability. However, pumping high-viscosity fluids can be disadvantageous to the economics of oil well drilling by effecting high friction pressure, requiring higher horsepower pumping equipment and subsequent higher fuel expenditure. Higher drilling fluid viscosity is advantageous only in the annular space between drill pipe and borehole, where drill cuttings are located and from which they need to be removed. In other locations within the well during drilling, primarily inside the drillpipe and flow channels within the bit, lower viscosity is preferred for the drilling mud so as to minimize frictional pressure loss. The narrower flow channels inside the drillpipe and drill bit cause the drilling fluid to undergo a higher shear rate, which also increases frictional pressure loss. To counteract this undesirable occurrence, drilling fluids currently in common use are referred to as “shear-thinning” fluids because they have been designed to have a higher viscosity when at lower shear rate and lower viscosity in higher shear rate conditions. This serves, to some extent, to satisfy both the need for higher viscosity in the wellbore annulus and lower viscosity inside the drill pipe and drill bit. However, the current state of the art in drilling fluids design allows for only a limited degree of control of the variance in fluid viscosity between these various locations in the well being drilled.
Cleaning (i.e., removing drill cuttings from) a deviated well, particularly drilled at a high angle, can be difficult. Limited pump rate, limited drilling fluid density, eccentricity of the drill pipe, sharp build rates, and oval-shaped wellbores can all contribute to inadequate hole cleaning. In turn, inadequate hole cleaning can lead to cuttings beds build-up in the wellbore, because commonly used drilling fluids are often unable to sufficiently remove cuttings from such cuttings beds while circulating through the wellbore.
Buildup of cuttings beds can lead to undesirable friction and possibly to sticking of the drill string. Such buildup is especially a problem in Extended Reach Drilling, in which the majority of the length of the well is deviated from vertical by more than 40 degrees.
Well treatments or circulation of fluids specially formulated to remove these cuttings beds are periodically necessary to prevent buildup to the degree that the cuttings or fines interfere with the drilling apparatus or otherwise with the drilling operation. Two commonly used types of treatment fluids that have been applied with limited success are highly viscous fluids, having greater viscosity than the drilling fluids being used in the drilling operation, and lower viscosity fluids, having less viscosity than the drilling fluids being used in the drilling operations. Commonly, the drilling operation must be stopped while such treatment fluids are swept through the wellbore to remove the fines. It is desired, but difficult, to prevent intermixing of these treatment fluids with the drilling fluid. Such occurrences can be problematic in that they may alter the physical properties, such as density, of the drilling fluid.
A new method taught in U.S. Pat. No. 6,290,001, issued Sep. 18, 2001 to West et al., enables a sweep without stopping the drilling operation. In that method, a sweep material is added to the wellbore drilling fluid, either directly or in a carrier fluid compatible with the drilling fluid. The sweep material is circulated in the well, where it dislodges, suspends or pushes drill cuttings, especially fines and smaller sized cuttings deposited on the lower side of the wellbore or in cuttings beds, to the surface of the well. The sweep material is then removed from the drilling fluid, preferably by sieving or screening, so the drilling fluid may be returned to the wellbore without significant change in density. The sweep material comprises a weight material, such as barium sulfate, that has been ground and sieved to a specific grind size sufficiently small to be suspendable in the drilling fluid and generally harmless to the fluid pumping apparatus but sufficiently large to be screened out of the drilling fluid, preferably by the principal shale shaker for the drilling operation.
There continues to be a need, however, for more methods and materials for removing drill cuttings from wellbores.
SUMMARY OF THE INVENTION
The method of the present invention employs a drilling fluid whose viscosity increases after the fluid passes through the drill bit nozzles in the borehole and decreases after the fluid returns to the well surface. This viscosity change is effected by using a drilling fluid containing a polymer that can be caused to crosslink (which increases the fluid's viscosity) downhole. The crosslinking can be reversed after the fluid returns to the well surface to facilitate ease of removal of drill cuttings and recycling of the drilling fluid.
Such delayed and reversible crosslinking may be effected in a number of ways. A preferred approach is to provide a drilling fluid comprising an aqueous base, a crosslinkable polymer, and a crosslinking agent. A crosslink activator encapsulated in an encapsulant is provided in the drilling fluid. The crosslink activator may be the crosslinking agent or it may be an agent that facilitates crosslinking of the polymer by the crosslinking agent, such as a pH adjusting compound. The encapsulant comprises a material or composition that can maintain its integrity and contain the crosslink activator apart from the polymer when introduced into the fluid before injection into the well but which breaks up or dissolves in the wellbore releasing the crosslink activator into the drilling fluid. The breaking up or dissolving of the encapsulant may be due to shearing caused by passing the fluid through the drill nozzles or may be due to increased temperature in the wellbore. Other suitable means for breaking up or dissolving of the encapsulant may alternatively be used. Once released into the drilling fluid, the crosslink activator can effect the crosslinking of the polymer. The drilling fluid containing the cr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for removing drill cuttings from wellbores and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for removing drill cuttings from wellbores and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for removing drill cuttings from wellbores and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3260775

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.