Chemistry: electrical and wave energy – Processes and products – Electrical
Reexamination Certificate
2002-01-03
2004-05-04
King, Roy (Department: 1742)
Chemistry: electrical and wave energy
Processes and products
Electrical
C204S563000, C204S571000, C210S695000
Reexamination Certificate
active
06730205
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to the extraction of scale, corrosion, paraffin, asphaltene and other types of contaminant deposits that form within conduits and on the surfaces of equipment utilized in the transmission of fluid columns. The instant invention further relates to the separation of contaminants and other pollutants from fluid columns transferred in such conduits.
It is common for contaminant deposits to accumulate within conduits and on equipment utilized in the transportation and transmission of fluids. In oilfield pipelines, for example, a mixture of oil, water and minerals flow out of a well and into equipment used to separate the marketable oil from water and other components of the fluid column. Paraffin, asphaltene and mineral scale deposits forming within conduits used to transport this fluid mixture restrict flow within the pipeline. Such deposits and the congestion they create typically lead to the deterioration of pumps, valves, meters and other equipment utilized to propel and monitor the flow of fluid through the pipeline system. These types of deposits typically result in lost production and substantial expenditures for thermal, mechanical or chemical remediation to achieve full flow within the pipeline.
Many thermal exchange systems, such as cooling towers or boilers, utilize water as a heat transfer medium. Mineral scale and corrosion deposits restrict the flow of water and clog the orifices of pumps, valves and other equipment. Further, deposits within piping systems and on thermal exchange grids tend to act as a layer of insulation and inhibit the transfer of heat carried by the water. Periodic descaling of heat exchange equipment typically results in process downtime and substantial labor and remediation expenditures. Therefore, contaminant deposits result in restricted flow, lost efficiency and increased energy consumption in thermal exchange systems.
In closed-loop systems where water is continuously circulated to facilitate heat transfer from one area of a system to another, one common method of removing corrosion, scale deposits and controlling algae and bacterial growth utilizes chemical treatment of the water. Over time, the build-up of chemicals, minerals and other contaminants results in the chemically treated water being unfit for continued use. Chemical laden water typically requires additional treatment to make it suitable for discharge into a wastewater disposal system or release into the environment. Chemical treatment of fluid columns is costly, requires the storage, handling and dispensing of dangerous chemicals and increasingly gives rise to growing environmental concerns directed to the quality of the water being discharged.
The effectiveness of these prior art methods is marginal and generally unsatisfactory. One alternative has been the utilization of magnetic treatment wherein magnetic flux is introduced to a contaminated fluid column. Magnetic field generators are commonly divided into two groups, permanent magnets and electromagnets. Each group produces magnetic energy that may be utilized to treat fluid columns. The density of the magnetic flux available in the fluid treatment area, which is typically the interior of a conduit through which contaminated fluids flow, may be measured and expressed in Gauss Oersted units. Commonly referred to as “gauss”, this unit of measurement is useful in the comparison of devices used in magnetic fluid treatment. While the use of magnetic flux has proven to provide positive benefits in the treatment of certain fluid columns, prior art magnetic field generators are challenged by a number of deficiencies.
Permanent magnets typically generate magnetic flux via an array of rare earth magnets proximate the flow path of a fluid through a section of conduit. Because the strength of the magnetic field cannot be adjusted, the flow rate of a fluid as it passes through the fixed strength of the magnetic field generated by a permanent magnet is a primary factor in determining the effectiveness of the treatment provided by such units.
Desired treatment of a contaminated fluid column may occur when the flow rate of a fluid is matched to a specific sized array of fixed magnets with a nonadjustable magnetic field strength. However, when the velocity of a feedstock varies from the required flow rate through a specific permanent magnet configuration, desired treatment of the fluid column may not occur. Therefore, when the velocity of a fluid deviates from the rigid parameters of a specific flow rate through specific sized conduit having a ratio of conduit size to the length of a fixed magnetic field strength required to provide the conduction coefficients necessary for effective treatment, use of permanent magnets may result in lost efficiency, or a total lack of magnetic treatment.
Electromagnets may be formed by electrically charging a length of an electrical conducting material, such as a length of metal wire, to create an electromagnetic field that radiates from the circumference of the wire. Coiling an electrically charged wire allows the density of the magnetic flux produced by this configuration to concentrate at the center of the coil of wire.
Wrapping a strand of electrical conductor, such as a length of copper wire, around a conduit, such as section of pipe, and connecting each end of the electrical conductor to the positive terminal and the negative terminal of a supply of electrical power is a common method of making an electromagnet. A basic principal of electromagnetic generation states the strength of the magnetic field provided by a device is determined by multiplying on the number of turns of a coil of wire by the constant current, or amperage, supplied to the coil. This calculation of wire turns and amperage is commonly referred to as the amp-turns of the device. The gauss provided by an electromagnet is directly proportional to the number of amp-turns. The magnetic field generated by the electrically charged coil may be strengthened by increasing the number of turns of wire around a conduit, increasing the voltage and current supplied to the coil or increasing both the number of turns and the intensity of the electrical supply. The strength of an electromagnetic field may be increased or decreased by adjusting the amperage supplied to the coil of wire in applications where periodic variations of the magnetic flux may be desired to provide desired fluid treatment.
In addition to creating an electromagnetic field, this configuration of coiled electrically charged wire typically generates heat. Heat generation has been a major limitation in developing the maximum electromagnetic field strength of prior art electromagnet devices. For example, heat generated by an electrically charged wire increases resistance within the coil, resulting in a drop in the flow of current through the device and diminishing the amp-turn, or gauss, of the electromagnet.
Excessive heat generation typically leads to the failure of prior art electromagnet devices when heat retention within the coiled wire is sufficient to cause sections of the wire to melt and come in contact with each other. The resulting short circuit reduces the efficiency of the device due to fewer amp turns being in effect. Heat may also cause the coil of wire to completely part and create an open circuit in the continuous coil of wire so that no electromagnetic field is generated. Thus, the generation and retention of heat typically impedes the flow of electrical current through the wire coil of prior art electromagnet devices and makes them less effective, or totally useless, in fluid treatment until the continuity in the entire electrical circuit can be restored.
In some instances, a protective housing may be utilized to shield the coiled wire from cuts, abrasions or other damage. However, encasing coiled layers of wire within a protective housing typically promotes the retention of heat generated by the coil of electrically charged wire. To disperse heat generated by such devices, protective housings of many prior
King Roy
Leader William T.
LandOfFree
Method for removing contaminants from conduits and fluid... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for removing contaminants from conduits and fluid..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for removing contaminants from conduits and fluid... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3235477