Liquid purification or separation – Processes – Ion exchange or selective sorption
Patent
1993-01-21
1994-08-16
Cintins, Ivars
Liquid purification or separation
Processes
Ion exchange or selective sorption
C02F 128
Patent
active
053384580
ABSTRACT:
An improved process is provided for the removal of chloramines from gas or liquid media by contacting said media with a catalytically-active carbonaceous char. The improvement is provided by the use of a carbonaceous char capable of rapidly decomposing hydrogen peroxide in aqueous solutions.
REFERENCES:
patent: 3733266 (1973-05-01), Bishop et al.
patent: 3909449 (1975-09-01), Nagai et al.
patent: 4624937 (1986-11-01), Chau et al.
J. Wang and W. Xie, "An Appraisal of the Surface Chemistry and the Catalytic Oxidative Activity of Nitrogen-Modified Activated Carbon by XPS, " Cuihua Xuebao 10 (4), 357 (1989).
H. P. Boehm, A. R. de Rincon, T. Stohr, B. Tereczki, and A. Vass, "Activation of Carbon Catalysts for Oxidation Reactions by Treatment with Ammonia or Hydrogen Cyanide, and Possible Causes for the Loss of Activity During Catalytic Action," Journal de Chemie Physique 84, 449 (1987).
Y. Komatsubara, S. Ida, H. Fujitsu, and I. Mochida, "Catalytic Activity of PAN-Based Active Carbon Fibre (PAN-ACF) Activated with Sulphuric Acid for Reduction of Nitric Oxide with Ammonia," Fuel 63, 1738 (1984).
L. Singoredjo, F. Kapteijn, J. A. Moulijn, and J. M. Martin-Martinez, "Modified Activated Carbon for Low Temperature Selective Catalytic Reduction of NO with NH3," 20th Bien, Conf. on Carbon, Jun. 23-28, 1991, p. 78.
W. Farmer and J. B. Firth, "The Catalytic Activity of Carbons from Aromatic Hydrocarbons and Some Derivatives," J. Phys. Chem. 28, 1136 (1924).
P. F. Bente and J. H. Walton, "The Catalytic Activity of Activated Nitrogenous Carbons," J. Phys. Chem. 47, 133 (1943).
J. Watanabe and T. Shiramoto, "Activated Carbon Electrodes for Air-Depolarized Wet Cells III: The Decomposition of Hyrdogen Peroxide by Activated Charcoal," J. Electrochem. Soc. Japan 20, 386 (1952).
E. Naruko, "Ammonia-Activated Charcoal," Kogyo Kagaku Zasshi 62(12), 2023 (1964).
I. Mochida, Y. Masumura, T. Hirayama, H. Fujitsu, S. Kawano, and K. Gotoh, "Removal of SO2 in Flue Gas by Polyacrylonitrile Based Active Carbon Fiber (PAN-ACF)," Nippon Kagaku Kaishi N4, 269 (1991).
A. Nishijima, H. Hagiwara, M. Kurita, A. Ueno, T. Sato, Y. Kiyosumi, and N. Todo, "Characterization of Nitrogen-Containing Active Carbon Catalysts for SO2 Removal," Bull Chem. Soc. Japan 55, 2618 (1982).
S. K. Naito, S. Takagi, H. Ebata, and S. Takei, "Activation of Carbon Catalysts for Oxidation of Iron (II) Ion in Sulfuric Acid Solution by Oxygen," Nippon Kagaku Kaishi 4, 467 (1979).
I. Gavat, C. Costea, and A. Draganescu, "Catalytic Activity of Pyrolized Urea-Formaldehyde Polymers and of Some Melamine and Benzoguanamine Condensation Polymers with Substances Containing CO Groups," Revue Roumaine de Chimie 12, 1127 (1967).
K. Boki, S. Tanada, and T. Miyoshi, "Removal by Adsorption of Hydrogen Sulfide by a New Type of Activated Carbon Containing Nitrogen," Nippon Eiseigaku Zasshi 38(5), 877 (1983).
H. Sano and H. Ogawa, "Preparation and Application of N-Introduced Carbon II: Application for Removal of Sulfur Oxides from Flue Gas," Osako Kogy Gijutsu Shikenjo Koho 26, 92 (1975).
K. Boki, S. Tanada, T. Kita, T. Nakamura, H. Takahashi, and R. Hamada, "Increase in Micropore Volume of N-Containing Activated Carbon Treated with Methylol Melamine Urea Solution," Experientia 39, 143 (1983).
S. Tanada, T. Kita, K. Boki, and Y. Kozaki, "Preparation of Narrow Pores Carbon Suitable for Hydrogen Sulfide Asorption," J. Environ. Sci. Health A20 (1), 87 (1985).
B. Stohr, H. P. Boehm, and R. Schlogl, "Enhancement of the Catalytic Activity of Activated Carbons in Oxidation Reactions by Thermal Treatment with Ammonia or Hydrogen Cyanide and Observation of Superoxide Species as a Possible Intermediate," Carbon 29(6), 707 (1991).
M. Zuckmantel, R. Kurth, and H. P. Boehm, "Carbons as Catalytic Agents for the Oxidation of Sulfurous Acid," Z. Naturforsch. 34b, 188 (1979).
Y. Maki, "Relation Between Performances of the Air-depolarized Cell and Catalytic Activity of Charcoals," J. Electrochem, Soc. Japan (Overseas Ed.), 27, No. 4-6 E 115 (1959).
R. Manoharan, A. K. Shukla, "Oxygen-Reducing Porous Carbon Electrode for Electrochemical Power Sources with Alakline Electrolytes," Journal of Power Sources, 10 (1983) 333-341.
D. M. Drazic and R. R. Adzic, "Influence of Surface Treatment of Active Carbon on Its Activity in Fuel Cell Electrodes," Flasnik Hemijskog Drustva Beograd, 349(2-4) 203(10) (1969) CA 73(26):136627.
Carrubba Robert V.
Hayden Richerd A
Matviya Thomas M.
Calgon Carbon Corporation
Cintins Ivars
LandOfFree
Method for removing chloramine with catalytic carbon does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for removing chloramine with catalytic carbon, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for removing chloramine with catalytic carbon will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-949723