Method for regulating fluid pump pressure

Pumps – Processes

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C417S395000, C604S067000

Reexamination Certificate

active

06503062

ABSTRACT:

TECHNICAL FIELD
The present invention relates to fluid flow control devices and, more specifically, to regulating pump pressures. In particular, the invention provides a method and apparatus for increasing the fluid flow rate in a fluid flow control device while maintaining desired pressure levels. The present invention also relates to systems that can determine the relative elevation of a pump with respect to a distal end of a line in communication with the pump.
BACKGROUND ART
A function of fluid flow control systems is to regulate the rate of distribution of transport fluid through a line. Some examples of fluid control devices are peritoneal dialysis machines and intravenous fluid delivery systems. Fluid flow control systems may include a permanent housing which does not come into direct contact with the transporting fluid and into which a fluid-exposed disposable cassette is placed. Flexible membranes, or other structures that respond to pressure, maintain separation between the permanent and disposable components. Examples of such control systems and their sub-components (in particular, valves) are disclosed in U.S. Pat. Nos. 4,778,451, 4,976,162, 5,088,515, and 5,178,182. These patents are all issued to Kamen and are all hereby incorporated herein by reference.
One problem with respect to fluid flow control devices arises in, for example dialysis treatment. Patients want to minimize the time spent hooked up to the peritoneal dialysis machine. In order to satisfy patient demands, the flow rate of the fluid pumped into the patient's catheter may be proportionally increased by increasing the pumping pressure. However, international specifications (for example, EN 50072) regulate the maximum and minimum pressures allowed in the patient's catheter. The maximum positive pressure allowable is set at 150 mm Hg (~3 psi), and the minimum (or maximum negative, or suction pressure) is set at −75 mm Hg (~−1.5 psi). Prior art dialysis machines use pumping pressures of about 75 mm Hg (1.5 psi) when pumping fluid into the patient. If the dialysis machine and the patient are at the same elevation, the pressure applied at the pump will be very close to the pressure at the patient's catheter. If, on the other hand, the dialysis machine is elevated above the patient, the pressure at the patient's catheter will be higher than the pressure applied at the pump. Consequently, to insure a margin of safety, the pumping pressure is set well below the maximum allowable pressure to compensate for any uncertainty in the position of the patient relative to the dialysis machine.
SUMMARY OF THE INVENTION
A method is provided for regulating fluid pump pressures based on the relative elevation between a fluid flow control device and a distal end of a fluid line by providing at least one liquid volume in valved communication with the distal end. The pressure measurement of the liquid volume is calibrated, and then valving is opened to establish communication between the liquid volume and the distal end of the fluid line. A pressure associated with the liquid volume is measured, and the fluid pump pressure is adjusted in accordance with the measured pressure.
Preferably, the fluid flow control device has two liquid volumes. A first liquid volume is in valved communication with a second liquid volume. The fluid line is preferably in valved communication with both liquid volumes. The pressures in the liquid volumes are calibrated, and communication between one liquid volume and the distal end of the fluid line is established. A pressure associated with the one liquid volume is measured, and the fluid pump pressure is adjusted in accordance with the measured pressure.
The fluid flow control device preferably includes a control volume for each liquid volume, a transducer for each control volume, and a processor for reading and storing pressure values, computing and identifying a correlation between pressure values, and calculating pressure values based on identified correlations. The processor may estimate the elevation differential based upon the pressure values, and/or regulate fluid pump pressures. The fluid flow control device may also include pressure means for pressurizing a liquid volume. The device may further include one of a wide variety of valve arrangements for controlling fluid communication between the liquid volumes and the distal end of the line. The processor may also control the valve arrangement, the means for pressurizing the liquid volume, and the fluid pump pressure.
In another preferred embodiment, the liquid volume and the control volume themselves are parts of a pump. Preferably, the pump includes a flexible membrane that divides the liquid volume and the control volume. In other embodiments, the fluid flow control device includes a pump.
In a preferred method for detecting the relative elevation between a first location and a second location, a fluid flow control device is provided at the first location with at least one membrane pump in valved communication with the second location. The membrane pump is isolated from the second location, and a pressure transducer of the membrane pump is calibrated. Valving is then opened to establish communication between the membrane pump and the second location. The pressure of the membrane pump is measured, and the relative elevation between the first location and the second location is estimated.
In a further embodiment, calibrating the pressure transducer may include filling the membrane pump with fluid in pressure equilibrium with the pressure at the first location, measuring a first calibration pressure of the membrane pump, filling the membrane pump with fluid in pressure equilibrium with a known (i.e., predetermined or measured) calibration pressure, and measuring a second calibration pressure of the membrane pump. The relative elevation between the first location and the second location may be estimated based on the known calibration pressure, the first calibration pressure, and the second calibration pressure.


REFERENCES:
patent: 4468219 (1984-08-01), George et al.
patent: 4778451 (1988-10-01), Kamen
patent: 4808161 (1989-02-01), Kamen
patent: 4976162 (1990-12-01), Kamen
patent: 5088515 (1992-02-01), Kamen
patent: 5178182 (1993-01-01), Kamen
patent: 5207645 (1993-05-01), Ross et al.
patent: 5628908 (1997-05-01), Kamen et al.
patent: 5795328 (1998-08-01), Barnitz et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for regulating fluid pump pressure does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for regulating fluid pump pressure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for regulating fluid pump pressure will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3038364

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.