Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Food or edible as carrier for pharmaceutical
Reexamination Certificate
1999-02-09
2001-07-17
Ware, Deborah K. (Department: 1651)
Drug, bio-affecting and body treating compositions
Preparations characterized by special physical form
Food or edible as carrier for pharmaceutical
C424S057000, C424S601000, C424S603000, C435S168000, C514S075000
Reexamination Certificate
active
06261591
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to methods for reducing hip joint laxity in animals and more particularly, to dog food compositions and feeding methods which reduce the incidence and severity of hip dysplasia and osteoarthritis in dogs.
BACKGROUND OF THE INVENTION
Canine hip dysplasia (CHD) is a common problem in veterinary medicine. CHD is a coxofemoral joint deformity which is not apparent at birth but develops during puppyhood, frequently resulting in severe arthritic pain and immobility. CHD occurs among many breeds of dogs, but has a higher incidence and severity among larger dog breeds having an average adult body weight of 35 pounds or more. Generally, the larger the size of a breed, the higher the incidence of CHD.
The principal clinical symptom of CHD is subluxation of the hip joint, an indicator of hip joint laxity, which causes abnormal wear and degeneration of hip joint tissue. Laxity of the hip joint begins a cycle in which movement by the animal forces the femoral head into an abnormal position in the joint. The abnormal positioning of the femoral head causes erosion of the joint cartilage and inflammation of the synovial membrane surrounding the joint. The end result of chronic joint laxity is an abnormally shallow acetabulum and a flattened femoral head, resulting in joint pain, instability and immobility. A similar mechanism is involved in the development of osteoarthritis. Research has shown that reduction of hip joint laxity during early growth helps to prevent the development of CHD and osteoarthritis in dogs.
Research also suggests a correlation between accelerated bone growth during the first nine months of puppyhood, and the development of CHD. The first nine months of life are considered to be a critical period for hip joint development in the dog. During this period the acetabulum is growing at an accelerated rate relative to the femoral head. The accelerated growth rate renders the acetabulum more plastic and particularly susceptible to malformation under the influence of hip joint laxity. It ha; been postulated that reduction of overall bone growth rate during the first nine months of life can improve hip joint congruity by reducing the disparate growth rate between the acetabulum and the femoral head.
Typically, diagnosis of CHD is accomplished by standard radiographic methods, which are approximately 70% accurate overall, with increasing accuracy of diagnosis the closer the animal is to 2 years of age. Radiographic diagnosis relies on a finding of subluxation of the feinoral head. The severity of CHD as deduced from clinical presentation does not always correlate well with actual radiographic measurements because of the confounding influence of individual and breed variations in temperament and body structure.
CHD has a genetic basis, with heritability most frequently estimated to be about 0.30. For example, a heritability of about 0.3 indicates that about 30% of the variation in occurrence of CHD is attributed to parentage, while the remaining 70% is attributable to environmental factors or interactions with environmental factors. The exact nature of the environmental factors which affect CHD incidence and severity is not known for certain, and clinically the disease is highly variable among individual dogs. However, evidence supports the contention that diet and feeding are significant factors affecting hip joint laxity and the development of CHD, and suggests that manipulation of diet, especially during the early stages of bone development, might be one way to treat CHD. Dietary methods for treating CHD are especially attractive because typically they are easily practiced.
A known dog food composition and feeding method exists for reducing hip joint instability in dogs. The composition has a specified dietary anion gap (DAG) of no more than about 20 milliequivalents/100 g of food. Dietary anion gap is calculated as: Na (mEq/100 g)+K (mEq/100 g)−Cl (mEq/100 g). The feeding method relies on administration of the composition during the early years of growth, and reduces subluxation of the femoral head. Another known feeding method, limit feeding, improves hip joint stability and reduces the incidence and severity of CHD by reducing the overall growth rate and bone maturation rate of pups. However, the known dog food compositions and feeding methods provide incremental amelioration of subluxation, and a need remains for dog food compositions and feeding methods which further reduce hip joint laxity and the severity of CHD.
It would be desirable to provide a method of reducing the incidence and severity of CHD and osteoarthritis by reducing hip joint laxity in dogs. It would also be desirable to provide such a method which is dietary in nature and easily practiced. It would be further desirable to provide a nutritionally balanced dog food composition which substantially improves hip joint congruity and ameliorates CHD and osteoarthritis. It would be still further desirable to provide such a dog food composition which, when fed to puppies during the early years of growth, reduces hip joint laxity and thus the severity of CHD in mature dogs.
SUMMARY OF THE INVENTION
These and other objects may be obtained with a nutritionally balanced dog food composition containing a dietary source of pyrophosphate. The dietary pyrophosphate source substitutes for other commonly used dietary phosphate sources which lack effect on hip joint laxity. For example, and in one embodiment of the dog food composition, about 2.0% sodium acid pyrophosphate, about 1.1% calcium carbonate and about 0.65% corn are together substituted for about 2.1% dicalcium phosphate and about 1.05% sodium bicarbonate. In use, a puppy is fed the dog food composition from weaning to about 2 years of age.
The dog food composition and feeding methods described herein reduce subluxation of the femoral head, thus slowing the development of CHD and osteoarthritis in dogs. Such methods are conveniently practiced by blending a dietary pyrophosphate source into a nutritionally balanced dog food composition, and then feeding the composition as substantially the sole diet to a puppy during the early stages of growth.
DETAILED DESCRIPTION
The nutritionally balanced dog food composition for reducing subluxation of the femoral head in the hip joint includes a source of dietary pyrophosphate blended into an admixture of ingredients which provides a nutritionally balanced food composition for dogs. The admixture may include a variety of suitable nutritious ingredients. The term dog food composition as used herein refers to any nutritionally balanced canned, dry or semi-moist dog food product such as those commonly commercially available in retail pet and grocery stores. In use, the dog food composition is fed to a puppy from weaning at about six weeks of age to about two years of age.
One embodiment of the dog food composition includes approximately 2.0% by weight of a dietary pyrophosphate source such as, for example, sodium acid pyrophosphate. The dietary pyrophosphate replaces other typical sources of dietary phosphate, such as dicalcium phosphate, which do not produce the same reduction of subluxation and amelioration of CHD. One theory explaining the ameliorating effect of dietary pyrophosphate on hip joint laxity is that by coating preformed bone crystal, pyrophosphate retards bone mineralization and growth rate, thereby reducing disparate growth between the feinoral head and acetabulum.
In alternative embodiments, the amount of dietary pyrophosphate or the type of pyrophosphate compound may be varied. Examples of suitable alternative pyrophosphate compounds include calcium pyrophosphate and tetrasodium pyrophosphate. In addition, sodium hexametaphosphate is thought to have the same effect as pyrophosphate compounds on hip joint laxity, and is a suitable substitute for a pyrophosphate compound. The amount of dietary pyrophosphate may range from about 0.1% to about 2.0% by weight. Although a precise dose-response relationship is not known, a practical upper limit for the
Armstrong Teasdale LLP
Ralston Purina Company
Ware Deborah K.
LandOfFree
Method for reducing hip joint laxity does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for reducing hip joint laxity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for reducing hip joint laxity will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2564436