Liquid purification or separation – Processes – Ion exchange or selective sorption
Reexamination Certificate
2001-12-11
2004-03-16
Drodge, Joseph W. (Department: 1723)
Liquid purification or separation
Processes
Ion exchange or selective sorption
C210S639000, C210S663000, C210S669000, C210S683000, C210S702000, C523S310000, C523S332000, C528S482000, C560S227000, C562S605000, C562S608000
Reexamination Certificate
active
06706193
ABSTRACT:
DESCRIPTION
The invention relates to the work-up of waste water, in particular lightly contaminated waste water, containing fluorinated emulsifiers, as employed in the polymerization of fluorinated monomers since they do not have telogenic properties. In particular, the salts, preferably the alkali metal or ammonium salts, of perfluorinated or partially fluorinated alkanecarboxylic acids or sulfonic acids are used. These compounds are prepared by electrofluorination or by telomerization of fluorinated monomers, which is associated with considerable effort. There has therefore been no lack of attempts to recover these valuable materials from waste water.
U.S. Pat. No. 5,442,097 discloses a process for the recovery of fluorinated carboxylic acids in usable form from contaminated starting materials, in which the fluorinated carboxylic acid is, if necessary, liberated from these materials in aqueous medium using a sufficiently strong acid, the fluorinated carboxylic acid is reacted with a suitable alcohol, and the ester formed is distilled off. The starting material used here can be a polymerization liquor, in particular from emulsion polymerization, in which the fluoropolymer is prepared in the form of colloidal particles with the aid of relatively large amounts of emulsifier. “Polymerization liquor” here is taken to mean the waste water produced on isolation of the fluoropolymer by coagulation (without further process steps, such as washing). This process has proven highly successful, but requires a certain concentration of fluorinated carboxylic acid in the starting material.
The recovery of fluorinated carboxylic acids by distillation can also be carried out in the absence of alcohols. In this process variant, the fluorocarboxylic acid is distilled off in the form of a highly concentrated azeotrope. However, this process variant is industrially disadvantageous for energetic reasons. In addition, the resultant waste water is more highly contaminated than before the treatment.
DE-A-20 44 986 discloses a process for the isolation of perfluorocarboxylic acids from dilute solution in which the dilute solution of the perfluorocarboxylic acids is brought into adsorption contact with a weakly basic anion exchanger resin, and the perfluorocarboxylic acid present in the solution is thereby adsorbed onto the anion exchanger resin, the anion exchanger resin is eluted with an aqueous ammonia solution and the adsorbed perfluorocarboxylic acid is thus transferred into the eluent, and finally the acid is isolated from the eluate. However, complete elution requires relatively large amounts of dilute ammonia solution, and in addition this process is very time-consuming. These disadvantages are overcome by the process disclosed in U.S. Pat. No. 4,282,162 for the elution of fluorinated emulsifier acids adsorbed onto anion exchangers, in which the elution of the adsorbed fluorinated emulsifier acid from the anion exchanger is carried out using a mixture of dilute mineral acid and an organic solvent. In this process, the use of the acid simultaneously effects regeneration of the exchanger resin.
The use of anion exchanger resins in waste water treatment on an industrial scale is essentially hindered by the presence of fluoropolymer latex particles. The latex particles are anionically stabilized and are consequently coagulated in the anion exchanger resin. The exchanger column thus becomes blocked.
This difficulty is overcome by a proposed process for the isolation of fluorinated emulsifier resins in which the finely divided solids in the waste water are stabilized using a surfactant or a surface-active substance, and subsequently the fluorinated emulsifier acids are bound to an anion exchanger resin, and the fluorinated emulsifier acids are eluted therefrom (WO-A-99/62830). In the examples, nonionic surfactants are employed in a concentration of from 100 to 400 mg/l.
A process has now been found for the recovery of fluorinated emulsifiers from an aqueous phase, where this aqueous phase, besides the emulsifier, contains small amounts of fluoropolymer particles and possibly further substances, where
an upper concentration value of a nonionic surface-active substance is determined below which no further decrease in desorption of the emulsifier bound to an anion exchanger takes place,
the aqueous phase is adjusted to a concentration of nonionic surface-active agent of between the upper concentration value determined in this way and a lower concentration which is still effective for preventing coagulation of the polymer particles,
the aqueous phase adjusted in this way is brought into contact with an anionic exchanger resin in order to effect the adsorption of the emulsifier onto the exchanger resin, and
the emulsifier is liberated from the exchanger resin.
The suitable concentration of nonionic surface-active agent is dependent on the type of polymer, on the surface-active agent and on any other substances present in the aqueous phase. It is therefore advisable to determine the suitable concentration limits of the nonionic surface-active agent for each waste water to be treated. A maximum concentration of 10 ppm, in most cases a concentration in the range from 5 to 0.1 ppm, is usually sufficient.
Since—as mentioned above—the waste water to be treated in accordance with the invention is preferably slightly contaminated, it is sensible to add only sufficient auxiliary chemicals to the waste water as is necessary in order to avoid causing fresh contamination for the further work-up of the waste water. If, on the other hand, it is desired to avoid the respective determination of the limit values in industrial practice, where mixtures of different waste water may have to be worked up together, a mean value of about 3 ppm can generally be used without problems.
A further advantage of the use of small amounts of nonionic surface-active agent, besides avoiding unnecessary costs, is also the suppression of foam, which can be very troublesome on an industrial scale and in some cases requires further contamination of the waste water with foam suppressors.
In the preparation of fluoropolymers, such as polytetrafluoroethylene, fluorinated thermoplastics and fluorinated elastomers, the polymers are separated off by coagulation, which is carried out mechanically with high shear ratios or chemically by precipitation with mineral acids or inorganic salts. The coagulated fluoropolymers are usually agglomerated and washed with water. Relatively large amounts of process waste water thus arise, namely usually from about 5 to 10 tonnes of waste water per tonne of fluoropolymer. In these process steps, the majority of the fluorinated emulsifier is washed out and is thus present in the waste water. The concentration is usually a few millimoles per liter, corresponding to approximately 1000 ppm. Besides the constituents already mentioned above, the waste water furthermore contains chemicals from the polymerization, such as initiators and buffers, which are present in approximately the same order of magnitude as the emulsifier, and very small amounts of fluoropolymer latex particles which have not been coagulated. The proportion of these latex particles in the waste water is usually less than 0.5% by weight.
It has already been mentioned that the preparation of fluorinated emulsifiers is associated with considerable effort, especially since these substances have to be employed in high purity. Furthermore, these emulsifiers have poor biodegradability, and therefore the most complete removal possible from the waste water appears necessary. The process according to the invention allows virtually quantitative recovery, even from the slightly contaminated types of waste water defined above.
A further advantage of the low concentrations of nonionic surface-active agent is the more effective separation of the latex particles from the anion-exchanged waste water. These particles are advantageously coagulated with small amounts of organic flocculating agents, it having been found that the amount of flocculating agent required increases
Burkard Georg
Hintzer Klaus
Löhr Gernot
3M Innovative Properties Company
Drodge Joseph W.
Lilly James V.
Szymanski Brian E.
LandOfFree
Method for recovering fluorinated emulsifiers from aqueous... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for recovering fluorinated emulsifiers from aqueous..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for recovering fluorinated emulsifiers from aqueous... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3189274