Method for recovering fluorinated alkanoic acids from waste...

Organic compounds -- part of the class 532-570 series – Organic compounds – Carboxylic acids and salts thereof

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C562S608000, C554S177000, C523S332000, C252S301500

Reexamination Certificate

active

06613941

ABSTRACT:

This application is a 371 of PCT/EP99/03672, filed May 27, 1999, published as WO 99/62858, on Dec. 9, 1999.
In the polymerization of fluorinated monomers in aqueous dispersion, use is made of fluorinated alkanoic acids as emulsifiers since they have no telogenic properties. In particular, use is made of the salts, preferably the alkali metal or ammonium salts, of perfluorinated or partially fluorinated alkanecarboxylic acids or alkanesulfonic acids. These compounds are prepared by electrofluorination or by telomerization of fluorinated monomers, which is costly. There have therefore been many attempts to recover these valuable materials from wastewater.
U.S. Pat. No. 5,442,097 discloses a process for the recovery of fluorinated carboxylic acids in usable form from contaminated starting materials. In this process, the fluorinated carboxylic acid is, if necessary, liberated from these materials in an aqueous medium using a sufficiently strong acid, the fluorinated carboxylic acid is reacted with a suitable alcohol and the ester formed is distilled off. The starting material can here be a polymerization liquor, in particular from an emulsion polymerization in which the fluoropolymer is prepared in the form of colloidal particles with the aid of relatively high amounts of emulsifier. This process has proven very useful, but requires a certain concentration of fluorinated carboxylic acid in the starting material.
From U.S. Pat. No. 4,369,266 it is known to pass a permeate from the ultrafiltration of fluoropolymer dispersions, containing fluorinated and stabilizing emulsifiers, over basic exchange resins in which the fluorinated emulsifier is retained and is recovered by subsequent elution.
DE-A-20 44 986 discloses a process for the recovery of perfluorocarboxylic acids from dilute solution, in which the dilute solution of the perfluorocarboxylic acids is brought into adsorption contact with a weak base anion-exchange resin and the perfluorocarboxylic acid present in the solution is thereby adsorbed on the anion-exchange resin, the anion-exchange resin is eluted with an aqueous ammonia solution and the adsorbed perfluorocarboxylic acid is thus transferred into the eluant and the acid is finally isolated from the eluate. However, complete elution requires relatively large amounts of dilute ammonia solution and this process is also very time-consuming. These disadvantages are overcome by the process known from U.S. Pat. No. 4,282,162 for the elution of fluorinated emulsifier acids adsorbed on basic anion exchangers, in which the elution of the adsorbed fluorinated emulsifier acid from the anion exchanger is carried out using a mixture of dilute mineral acid and an organic solvent. In this process, the ion-exchange resin is regenerated at the same time by use of the acid.
It has been found that this last-named process presents problems in industrial practice when, in particular, the wastewater processed contains very fine solids which in the past were often not recognized or at least not recognized as causing a problem. In this case, the apparatuses containing the anion-exchange resin become clogged with these solids more or less quickly, which becomes noticeable as a result of increased flow resistance and reduced performance. The upstream filters or frits customarily used are ineffective here.
It has also been found that these difficulties are caused by the fine solids being kept in relatively stable colloidal suspension by the emulsifier acids. When these acids are then removed from the system by means of the anion-exchange resin, this relatively stable dispersion is destroyed and the solid is precipitated and clogs the ion-exchange resin. It was thus also found that the performance of the process known from U.S. Pat. No. 4,282,162 can be considerably improved and also made suitable for wastewater containing fine solids if these solids are removed from the wastewater before it is brought into contact with the anion-exchange resin.
A further aspect of the invention is that it is possible to remove not only existing solids but also other interfering constituents which can be converted into solids. Such interfering constituents can be other acids or their salts which are likewise bound to the ion-exchange resin and thus not only tie up ion exchange capacity but may also require special precautions during and/or after elution of the emulsifier acids.
An example of such an interfering acid is oxalic acid which is frequently used as a buffer. The addition of calcium ions in stoichiometric amounts or in an excess or deficiency, for example as chloride or hydroxide, enables all or some of the oxalic acid to be precipitated as sparingly soluble oxalate, advantageously together with any further interfering, finely divided solids present.
The invention accordingly provides a process for the recovery of fluorinated emulsifier acids from wastewater, which comprises firstly removing fine solids and/or material which can be converted into fine solids from the wastewater, subsequently binding the fluorinated emulsifier acids on an anion-exchange resin and eluting the fluorinated emulsifier acids from the latter. Further aspects of the invention and their preferred embodiments are described in more detail below.
Wastewater suitable for treatment is waste process water in which surface-active fluorinated alkanoic acids are present. The process is particularly suitable for wastewater from the polymerization of fluorinated monomers by the emulsion method, in which the fluorinated monomer is converted in the presence of a relatively high concentration of fluorinated emulsifier acid and with mild stirring into a finely divided polymer which is in finely dispersed, colloidal form and in which the latex obtained is coagulated, for example by intensive stirring, after the desired solids concentration has been reached, so that the polymer precipitates as a fine powder.
It has been found that in the known work-up it is especially relatively low molecular weight polymer material which causes difficulties; the adverse effect of these low molecular weight polymers becomes particularly noticeable when the polymerization process leads to a broad molecular weight distribution. In the case of such “difficult” wastewater too, the process of the invention displays its capabilities.
The method of removing the fine solids depends on the particular circumstances:
In the case of acidic wastewater, it can be sufficient to carry out a—possibly partial—neutralization with suitable bases such as calcium hydroxide, resulting in precipitation of the colloid—and any precipitatable substances such as oxalate ions present—while the emulsifier acid or its salt remain in solution.
Another possible way of precipitating the interfering colloids is the addition of suitable metal salts, for example aluminum salts such as aluminum chloride and aluminum sulfate, calcium salts such as calcium chloride, magnesium salts such as magnesium chloride and magnesium sulfate, iron salts such as iron(II) chloride or iron(III) chloride and iron sulfate. In the case of acidic wastewater, the addition of corresponding metals such as aluminum, iron or magnesium is also possible. To improve the flocculation, small amounts of a flocculant can also be added.
A further possible way of precipitating the interfering colloids is electrocoagulation. Here, an electric field is applied to the wastewater to coagulate the colloidal particles. In the case of inert electrodes (for example titanium), the particles deposit on the surfaces. In the case of soluble electrodes (for example iron and/or aluminum), metal cations having a high charge: diameter ratio are introduced into the solution and these effect coagulation as in the case of addition of metal salts. An advantage of electrocoagulation is that it avoids the additional introduction of anions such as chloride or sulfate. To improve flocculation, small amounts of a flocculant can be added.
Suitable mechanical methods of removing the fine solids are crossflow filtration (for example using membranes, centrifuges)

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for recovering fluorinated alkanoic acids from waste... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for recovering fluorinated alkanoic acids from waste..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for recovering fluorinated alkanoic acids from waste... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3035846

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.