Method for recovering and producing C4-C6 dicarboxylate from...

Organic compounds -- part of the class 532-570 series – Organic compounds – Carboxylic acids and salts thereof

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C560S191000, C560S179000, C560S193000, C560S204000, C203S035000

Reexamination Certificate

active

06825379

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to methods for producing C
4
-C
6
dicarboxylates, and more particularly, to a simple and efficient method for recovering and producing C
4
-C
6
dicarboxylates from an alkaline waste solution generated in a caprolactam preparation process.
BACKGROUND OF THE INVENTION
To prepare cyclohexanol and cyclohexanone by oxidizing cyclohexane with air in liquid phase plays an important role in fiber industry such as synthesis of nylon 6 & 66 etc. For example, caprolactam used as raw material of nylon 6 and adipic acid used as raw material of nylon 66, are both made from cyclohexanol and cyclohexanone.
In a process for preparing caprolactam, normally, cyclohexane is introduced with air and oxidized to generate cyclohexanol and cyclohexanone at a temperature 150-160° C. and under a pressure 8-10 kg/cm
2
in the presence of Co or Cr used as a catalyst. The generated cyclohexanol and cyclohexanone are further treated with subsequent processes such as oximation and Beckmann rearrangement, so as to synthesize caprolactam.
During cyclohexane oxidation, part of cyclohexane may be over-oxidized to produce some neutral substances and acidic substances that would react with neutral alcohols to form esters. Accordingly, besides main products i.e. cyclohexanol and cyclohexanone, by-products such as monocarboxylic acids, dicarboxylic acids (mainly including succinic acid, glutaric acid and adipic acid), oxycarboxylic acids, a small amount of alcohols, aldehyde, low molecular weight esters, esters containing cyclohexanol group, ketones and other unknown organic substances, also co-exist with the main products in the oxidation reaction mixture. To isolate these by-products from cyclohexanol and cyclohexanone, is usually done by saponifying and salinizing the by-products with an aqueous solution of sodium hydroxide to form an aqueous solution of organic acid salts of sodium, which is called an alkaline waste solution.
Salts of dicarboxylic acids (such as succinic acid, glutaric acid, adipic acid, etc) contained in the alkaline waste solution, are acidified and separated to form various dicarboxylic acids of succinic acid, glutaric acid and adipic acid, which dicarboxylic acids can be further esterified with methanol or other alcohols to synthesis dicarboxylates of great applicability in industry. For example, C
4
-C
6
dicarboxylic acids are esterified with methanol to form a mixture of dimethyl dicarboxylates, which is a non-toxic environmental-friendly organic solvent with high efficiency, high burning point and great solubility solvency, and thus may be potentially commercialized in the market. Besides, dimethyl adipate can be converted by esterification/hydrogenation into 1,6-hexanediol, which is an important raw material of polyurethane resin and polyester resin, and thereby endowed with high commercial and economic value.
Conventionally, the alkaline waste solution is directly burnt and converted into sodium carbonate, so as to recover sodium contained in the alkaline waste solution. Although this treatment is simply direct, highly corrosive alkaline substances are usually produced in combustion, thereby undesirably damaging the equipment lifetime with safety concern. Also, carbon dioxide produced from combustion brings about environmental problems such as green house effect and air pollution, etc. Further, it is a significant loss of economic benefits if not capable of recovering valuable substances from the alkaline waste solution. In view of the above, associated patents disclosing recovery of valuable substances from an alkaline waste solution, are exemplified as follows.
In U.S. Pat. No. 6,063,958, an alkaline waste solution produced from a caprolactam preparation process, is firstly neutralized with a proton-containing aqueous solution of inorganic acids, for adjusting its pH value to less than or equal to 3 and separating the alkaline waste solution into an organic phase and an aqueous phase. The aqueous phase is an aqueous solution of inorganic acid salts e.g. sodium sulfate etc. The organic phase is extracted for adipic acid and 6-hydroxycaproic acid therefrom by using a proton-containing aqueous solution of inorganic acids, allowing the organic phase to be separated into layers, an aqueous layer of which is further extracted for adipic acid and 6-hydroxycaproic acid by using alcohols, ketones, esters or a mixture of any two thereof. The above-obtained extract is then adopted to extract the aqueous phase containing inorganic acid salts e.g. sodium sulfate, for retrieving adipic acid and 6-hydroxycaproic acid. As a result, the final extract is alcohols, ketones, esters or the mixture of any two thereof, with rich content of adipic acid and 6-hydroxycaproic acid. By distilling this final extract, valuable substances e.g. adipic acid and 6-hydroxycaproic acid are recovered at a yield of 50-55%.
Japan Patent Publication Sho 53-33567 discloses addition of sodium hydroxide to a reaction solution of cyclohexane oxidation. The obtained alkaline organic solution is then neutralized and adjusted its pH value with sulfuric acid, and separated into an organic phase and an aqueous phase of a sodium sulfate solution. The organic phase is firstly extracted with an inorganic solution containing sodium sulfate at concentration of 15% or more by weight. The extract is mixed with the aqueous phase, and then the mixture is extracted with an organic solvent. Such resulted extract is subsequently distilled for removing the organic solvent therefrom, so as to proceed esterification/hydrogenation for producing 1,6-hexanediol.
U.S. Pat. No. 4,442,303 discloses a method for recovering C
4
-C
6
dicarboxylic acids from an aqueous waste solution generated in a process of adipic acid preparation. A mixture of C
1
-C
3
alkyl alcohols and C
6
-C
20
alkyl alcohols is mixed and esterified with the aqueous waste solution. After the reaction mixture is settled to form separate phases, an organic phase thereof is distilled to obtain C
4
-C
6
dicarboxylic acids and esters containing C
6
-C
20
alkyl alcohols, so as to recover the dicarboxylic acids.
U.S. Pat. No. 4,052,441 discloses that a reaction mixture obtained by catalyzing cyclohexane with air, is added with an alkaline solution to separate out an alkaline waste solution containing monocarboxylic acids, 6-hydroxycaproic acids and dicarboxylic acids. The alkaline waste solution is neutralized with sulfuric acid to separate into an organic phase of organic acids and an aqueous phase of a sodium sulfate solution. The organic phase is distilled under vacuum for removing monocarboxylic acids with low boiling point and water, and then cooled down to recover adipic acid by crystallization. After crystallization, the parent liquor is treated with two-step distillation for respectively recovering monocarboxylic acids, 6-hydroxycaproic acid and dicarboxylic acids, which can be esterified and fractionated to get ester products. The crude adipic acid obtained from crystallization can be further purified by recrystallization or esterification.
U.S. Pat. Nos. 4,271,315 and 4,316,775 disclose a method for recovering a waste solution generated in a process of adipic acid preparation. First, the waste solution is concentrated to remove part of water and volatile substances. Then, the concentrate is esterified with methanol, and subsequently extracted for extracting C
4
-C
6
dimethyl dicarboxylates by using an insoluble organic solvent. After settling down, an organic phase is distilled for recovering the organic solvent, so as to obtain a mixture of C
4
-C
6
dimethyl dicarboxylates.
Though the above patents provide useful methods or treatments, there are still some drawbacks in respect of recovering valuable substances as follows.
1. Extraction of valuable substances is performed by using soluble or insoluble solvents as extract agents, which extraction process is complex in proceeding, and low in total recovery yield of the valuable substances(below 50%), wherein the recovered valuable substances still contain a lot of impuri

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for recovering and producing C4-C6 dicarboxylate from... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for recovering and producing C4-C6 dicarboxylate from..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for recovering and producing C4-C6 dicarboxylate from... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3354898

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.