Method for recovering amino acids

Organic compounds -- part of the class 532-570 series – Organic compounds – Carboxylic acids and salts thereof

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C562S554000, C562S562000, C562S573000, C210S692000, C210S660000

Reexamination Certificate

active

06392094

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a method for recovering various kinds of amino acids from a mixed solution comprising inorganic acid salts, coloring matters, ashes, betaines, amino acids and non-electrolytes such as saccharides. In the course of producing sucrose from sugar beets, impurities other than sucrose move into molasses. The molasses still contains sucrose in about a half amount, so that sucrose has further been recovered from the molasses by ion chromatography (hereinafter also referred to as “CR”). Residues containing sucrose which can not be recovered and trace amounts of amino acids have been treated as “CR waste liquor”. Further, in the production of sucrose, when ion exchange resins used for purification of sugar liquid in the process of sugar manufacture are regenerated, trace amounts of amino acids adsorbed by the ion exchange resins are eliminated together with regenerating solutions to flow out. This effluent liquor has also been treated as “resin waste liquor”. These CR waste liquor and resin waste liquor have hitherto been subjected to the activated sludge process and discarded, or only condensed for utilization as organic fertilizer. The present invention relates to a novel method for recovering amino acids, which makes it possible to recover trace amounts of amino acids existing in such waste liquor.
BACKGROUND OF THE INVENTION
Previously, CR has been utilized as one method for separating respective ingredients from solutions containing the multiple ingredients, such as natural material solutions. However, it has been practically impossible to industrially utilize CR as such for separating trace amounts of ingredients, considering the price of products obtained. Because it necessitates large-scale equipment and a large amount of treating liquid. Many processes have been therefore contrived for industrially using CR. For example, the present inventors have disclosed in Japanese Patent Publication No. 56-39640 that only fractions having sucrose/raffinose ratios within a specific range are collected by separation through a salt type strongly acidic ion exchange resin, and fractionally crystallized, which makes it possible to industrially produce raffinose from sugar beet molasses. Further, as to a method for separating materials similar to those in the present invention, one invention is disclosed in Japanese Patent Laid-Open Publication (Hei) 6-276995. This invention is directed to a method for producing a raw flavoring material, which comprises supplying CR waste liquor or resin waste liquor to a sodium type strongly acidic ion exchange resin to allow amino acids to be adsorbed thereby, and then, eluting them with a solution of sodium hydroxide through a hydrogen ion type weakly acidic ion exchange resin connected to the back of the sodium type strongly acidic ion exchange resin.
The object of the invention described in Japanese Patent Laid-Open Publication (Hei) 6-276995 is to obtain an amino acid-rich fraction, and the fraction can be used as a raw flavoring material. However, the fraction contains materials other than amino acids, and this invention is not directed to a method for recovering only amino acids.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a method for recovering various kinds of amino acids from a solution containing trace amounts of amino acids in a highly concentrated inorganic acid salt or a highly concentrated non-electrolyte such as saccharide, for example, CR waste liquor or resin waste liquor.
The present invention relates to a method for recovering amino acids, which comprises (1) supplying a mixed solution containing inorganic acid salts, coloring matters, ashes, betaines, amino acids and non-electrolytes such as saccharides to a first-step first resin layer comprising a sodium type strongly acidic ion exchange resin (hereinafter also referred to as an “Na type IER”) or a potassium type strongly acidic ion exchange resin (hereinafter also referred to as a “K type IER”), (2) separating an effluent which flows out of the first resin layer using water or an aqueous solution of a caustic alkali as an eluent into at least a first fraction containing coloring matters, acidic amino acids and ashes, a second fraction containing neutral amino acids and saccharides, and a third fraction containing betaines, (3) supplying the second fraction to a second-step resin layer comprising at least one resin selected from the group consisting of an ammonium type strongly acidic ion exchange resin (hereinafter also referred to as an “NH
4
type IER”), a calcium type strongly acidic ion exchange resin (hereinafter also referred to as a Ca type IER”) and a magnesium type strongly acidic ion exchange resin (hereinafter also referred to as an Mg type IER”), and (4) recovering various kinds of amino acids contained in an effluent which flows out of the second-step resin layer.
In the present invention, the term “neutral amino acids” means neutral amino acids including neutral aromatic amino acids such as tyrosine, in a broad sense.
Also, in the present invention, the term “a caustic alkali” means alkali hydroxide including sodium hydroxide and potassium hydroxide.
As to an eluent used for the ion exchange resin in the present invention, an aqueous solution of ammonia is used for the NH
4
type IER, water or an aqueous solution of a caustic alkali for the Na type or K type IER, and water for the Ca type IER and the Mg type IER.
Further, when the above-mentioned second-step resin layer is the Ca type IER, the effluent which flows out of the second-step resin layer may be further partly supplied to a third-step resin layer comprising the Mg type IER to recover various kinds of amino acids contained in an effluent which flows out of the third-step resin layer using water as an eluent (which means “recovering method
2
-
2
-A” described later).
Furthermore, when the above-mentioned second-step resin layer is the Mg type IER, the effluent which flows out of the second-step resin layer may be further partially supplied to a third-step resin layer comprising the Ca type IER to recover various kinds of amino acids contained in an effluent which flows out of the third-step resin layer using water as an eluent (which means “recovering method
3
-
2
-A” described later).
As the eluent for the above-mentioned first resin layer, there may be used an aqueous solution of a caustic alkali having a pH of 8.5 to 11.0.


REFERENCES:
patent: 5198120 (1993-03-01), Masuda et al.
patent: 6099654 (2000-08-01), Kaneko et al.
patent: 1248113 (1959-10-01), None
patent: 1195655 (1959-11-01), None
patent: 2000-109453 (2000-04-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for recovering amino acids does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for recovering amino acids, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for recovering amino acids will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2864977

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.