Method for recording and reproducing information, apparatus...

Incremental printing of symbolic information – Electric marking apparatus or processes – Electrostatic

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06493013

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a method for recording and reproducing input information, an apparatus for the same and a recording medium such as a card and a label.
Heretofore, silver salt photography is known as a high sensitivity photographing technology, in which a taken image is recorded on a film or the like material through a developing process, and then reproduced by using a silver salt emulsion on a photographic paper or by optically scanning the developed film to display it on a cathode ray tube (hereinafter referred to as CRT).
Also known is an electrophotography method in which a photoconductive layer which is deposited together with an electrode is fully charged by corona electric charging at a dark place, after which the photoconductive layer is exposed to intense light to thereby make exposed portions conductive. Charges of the exposed portions are leaked for removal to optically form an electrostatic latent image on the photoconductive layer, and then a toner which has electric charges opposite in polarity to (or the same as ) the remaining charges is adhered to the latter for development.
Although this technology is mainly used in photocopying, it cannot be generally used for photographing because of low sensitivity, and in photocopying the toner developing is carried out at once after an electrostatic latent image is formed since charge holding time is short.
In television photography, a picture image is obtained by a camera tube, which provides electric signals of the picture image by means of a photosemiconductor for outputting to a CRT or for video recording by magnetic recording or the like to output the image on a CRT as desired.
Silver salt photography is excellent for storing a taken object image, but it needs developing to form a silver salt image and further complicated optical, electrical and chemical processing for reproducing the image in a hard copy or a soft copy (CRT output).
Although electrophotography is easier and quicker in developing an electrostatic latent image than silver salt photography, the former is inferior to the latter in the storing period of a latent image, resolution of the developer and picture quality.
Television photography requires linear scanning for obtaining and recording electric picture signals provided by a camera tube. Linear scanning is carried out by an electron beam in the camera tube and by a magnetic head in video recording. Resolution of the television photography image depends on the number of scanning lines and hence it is considerably inferior to planar analog recording such as silver salt photography.
Television photography using a solid-state image device such a CCD is essentially the same in resolution as the above-described television photography.
In these technologies, there are disadvantages such that high quality and high resolution picture image recording requires complicated processing while simpler processing of picture images results in lack of storing function or degradation of picture quality. Gramophone records, cassette tapes or the like media are used for recording aural information, and video tapes, compact discs, optical discs are used for recording picture image information and aural information. Although records and cassette tapes are very convenient media for recording voice, they have too small memory capacity to record picture image information. Video tapes require linear scanning, and is quite inferior in resolution to planar analog recording such as silver salt photograph. Compact discs and optical discs have essentially the same poor resolution as video tapes.
In the field of printing, the image processing system includes an original scanning unit, computer and exposure recording. The original is scanned and subjected to picture image processing, such as color correction and sharpness processing, and a scanner is used for recording the image on a film. When a color scanner is used, in the original scanning unit a color original is photoelectrically scanned to provide unadjusted three-color (red R, green G and blue B) separation signals, which are stored in a magnetic disc or a magnetic tape. The computer reads data stored to apply various processing, such as color adjustment, tone adjustment and picture image composition, and then provide adjusted four color separation signals. In the exposure recording unit, a film is exposed to scanning exposure in synchronism with the original scanning according to the four-color separation signals to output an adjusted four-color separation picture image.
Picture image data, read from the original, are enormous and hence they are according to the prior art scanner system, temporarily stored in a magnetic disc or a magnetic tape, and are read as desired. However, the scanner system needs much time to record picture image data to and read them from a magnetic disk or a magnetic tape and furthermore requires a large space for storing a large number of magnetic discs or tape to store enormous image data, say tens MB of data. In addition, there is a disadvantage that data stored in a magnetic tape may be damaged during long term of storing.
In printing, positioning of an original is necessary for setting it on a reading cylinder; it is hard to set the original on the reading cylinder with accurate rotation angle for rotating it a predetermined angle. In addition, various kinds of processing, such as color adjustment, masking and sharpness processing, are performed by computer operation, which involves a great amount of processing. This requires a large computer, resulting in an expensive large-scaled system.
Usually in the printing process, the projecting department makes as the first step thereof instructions concerning an enlargement ratio of a lantern slide original and trimming as to what portion thereof to be printed. For example, in trimming indication a tracing paper is placed on a 35 mm film original for transferring the pattern thereof by pencil to make the indication, with a description of the enlargement ratio. The trimming indication is put on a bag containing the original by an adhesive tape and sent to a printing step together with a schedule sheet. During transportation of this documents, the tracing paper can separate from the original or can be spoiled.
In the conventional scanner, an original is applied to the drum and hence there are disadvantages such that finger prints may placed on the original, and such that the original may be broken in separation from the drum. For small enlargement ratio, an original is directly applied to the drum by spraying a power to it to avoid Newton ring due to partial difference in adhesiveness between the original and the drum. For high enlargement ratio, after dipped in paraffin, an original is applied around the drum by means of transparent polyester film for preventing image of the powder from appearing in the printed picture image. Thus, the scanner involves a problem of the original being spoiled due to spraying of the powder and dipping of the original in paraffin. In addition, these operations requires time consuming preparation which reduces productivity.
In the conventional photocopying machine, a photoconductive layer which is deposited together with an electrode is fully charges by corona electric charging at a dark place, after which the photoconductive layer is exposed to intense light to thereby make exposed portions conductive. Charges of the exposed portions are leaked for removal to optically form an electrostatic latent image on the photoconductive layer, and then toner which has electric charged opposite in polarity to (or the same as) the remaining charges.
The exposure process according to the prior art copying machine requires high voltage and large electric power since electrostatic latent images are formed by exposing intense light after corona charging is fully carried out at high voltage. Although electrostatic latent images obtained can be promptly developed by a toner with ease. However, the toner development must be carried out at once aft

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for recording and reproducing information, apparatus... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for recording and reproducing information, apparatus..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for recording and reproducing information, apparatus... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2972786

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.