Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues – Blood proteins or globulins – e.g. – proteoglycans – platelet...
Reexamination Certificate
2000-05-26
2002-05-28
Naff, David M. (Department: 1651)
Chemistry: natural resins or derivatives; peptides or proteins;
Proteins, i.e., more than 100 amino acid residues
Blood proteins or globulins, e.g., proteoglycans, platelet...
C530S412000, C530S416000, C435S214000
Reexamination Certificate
active
06395880
ABSTRACT:
FIELD OF INVENTION
The invention relates to a new method for purifying antithrombin III.
BACKGROUND OF THE INVENTION
Antithrombin III (AT III) is a plasmatic protein which acts as a coagulation inhibitor by inhibiting thrombin, factors IXa, Xa, XIa and XIIa.
AT III deficiency or hereditary thrombophilia is an autosomal dominant hereditary disease with an inclination to thrombosis and embolisms due to a reduced formation of AT III.
Acquired AT III deficiency may, e.g., occur with disseminated intravascular coagulation (DIC), sepsis, cirrhosis of the liver or with nephrotic syndrome.
AT III-deficiency symptoms may also occur in case of heart-valve prostheses, postoperative thromboembolic complications, in estrogen therapy or in the asparaginase therapy.
AT III has a high affinity to heparin and heparinoids, and therefore a separation of the heparin or the heparinoid is necessary when producing pure antithrombin III-preparations.
According to EP 0 307 002 A1, the cleavage of this AT III/heparin or AT III/heparinoid complex, respectively, is carried out with immobilized protamin, whereby heparin is bound to immobilized protamin, and AT III is recovered from the supernatant. Prior to the treatment with the immobilized protamin, the AT III/heparin or AT III/heparinoid complex, respectively, is purified from undesired proteins by adsorption on an ion exchanger and elution by means of a saline solution at pH 7.5. It has been shown that with the ion exchange chromatography not a cleavage of the complex, but a separation of undesired accompanying proteins was achieved, the complex as such remaining adsorbed without any change.
A further possible way of purifying AT III is by means of affinity chromatography via heparin-sepharose.
In Prep. Biochem. 13 (1) (1983), pp. 1-20, e.g., a method for purifying AT III is described in which AT III at first was purified via affinity chromatography with heparin-sepharose, and subsequently by means of ion exchange chromatography and gel chromatography, the elution of AT III from heparin-sepharose occuring at pH 7.4. The ion exchange chromatography was carried out on DEAE-Sepharose, AT III being bound at a pH of 8.6.
In Thrombosis Research 5 (1974), pp. 431-452, also the purification of AT III via heparin-sepharose is described, adsorption being attained at pH 8.5 and desorption, i.e. the cleavage of the complex of immobilized heparin and AT III, at pH 7.5. In the subsequent ion exchange chromatography on DEAE-Sephadex, AT III was bound at pH 8.0 and eluted at pH 7.4.
A similar method is described in DE 2 243 888; here, too, the purification of AT III on a cross-linked heparin-agarose gel is disclosed, wjereby the adsorption on the heparin gel is carried out at pH 8.5, and the desorption, i.e. the cleavage of AT III from immobilized heparin, at pH 7.3.
BRIEF SUMMARY OF THE INVENTION
The present invention is based on the object of providing a new method for producing antithrombin III-preparations with high purity and in high yields, whereby AT III, as free as possible from heparin and heparinoid, respectively, is to be recovered.
DETAILED DESCRIPTION OF THE INVENTION
According to the invention, this object is achieved by a method for purifying AT III from a starting material comprising an AT III/heparin or At III/heparinoid complex, which is characterized in that the AT II/heparin or AT III/heparinoid complex is adsorbed on an anion exchanger material, and subsequently AT III is cleaved from the adsorbed complex and eluted. At this cleavage, heparin remains on the anion exchanger, i.e. a selective elution of AT III occurs.
Preferably, the cleavage according to the invention is carried out with a buffer at a pH ranging from 8.5 to 10.5.
For, surprisingly, it has been found that cleavage of the heparin/AT III or heparinoid/AT III complex, respectively, is possible in the course of an anion exchange chromatography, and this even at a pH higher than 8.5.
It has been found that AT III can be eluted from an anion exchanger selectively relative to heparin or that the complex formation between AT III and heparin or heparinoid, respectively, can be broken, while simultaneously the binding of heparin to the adsorption material (which binding in contrast to heparin-sepharose is not covalent) will remain. Although in the prior art the affinity of AT III to heparin has been considered to be very high, primarily at such a pH, (cf. Thrombosis Research (1974) or DE 2 243 688) and the cleavage of the complex (i.e. the cleavage of AT III from immobilized heparin), even with covalently bound heparin, was always carried out at low pH values, it has been shown that by means of anion exchange chromatography, a selective elution of AT III from adsorbed AT III/heparin or AT III/heparinoid complex is possible.
Within the scope of the present invention it has however been found that, even at such high pH-values, a cleavage of the complex could be attained, with heparin nevertheless remaining substantially bound to the anion exchanger.
Preferably, in the method according to the invention, elution is carried out with a buffer which has a conductivity of between 15 and 50 mS. At such a conductivity, an optimum of specificity of elution is attained, i.e., that it will be sufficient, on the one hand, to allow a substantially complete cleavage of the complex, while, on the other hand, it is not that high that also the heparin or heparinoid, respectively, will be co-eluted. The conditions for the adsorption and desorption, respectively, generally depend on the anion exchange material used and substantially are a function of the conductivity and of the pH value of the buffer.
In particular, the correlation between pH and the conductivity is such that with a low conductivity, e.g. around 20 mS, also the pH of the buffer solution can be lower, e.g. 8.5, and vice versa. As the buffer, e.g. Tris-, phosphate-, or glycine-containing solutions are used.
Preferably, prior to adsorption, heparin or a heparinoid, respectively, in an amount of between 30 and 3,000 U/ml is admixed. This will ensure that all the AT III in a starting material will be present as a complex, and thus no loss of yield caused by free AT III will occur.
Preferably, the method according to the invention is carried out in a two-step chromatographic purification, wherein, in a first step, the complex is adsorbed on an anion exchanger material, and at a pH in the range of from 6.0 to 7.5 the stable complex is eluted. Subsequently the adsorption of the complex according to the invention and the cleavage respectively the elution of AT III from the complex occur. With a pH value of between 8.5 and 10.5, preferably a higher conductivity of the buffer is adjusted, e.g. 10-60 mS, preferably between 15-50 mS, most preferred between 20-35 mS, at the elution.
Since AT III preferably is used as a therapeutic agent, in most instances a treatment for virus inactivation is necessary. This treatment preferably is carried out at the stage of the AT III/heparin or AT III/heparinoid complex, since AT III in complexed form is more stable than in free form. Preferably, the virus inactivation treatment is also carried out in two steps, i.e. by two independent virus inactivation methods.
This inactivation treatment preferably is ensured by a tenside and/or heat treatment, e.g. a heat treatment in the solid state, in particular a vapor treatment according to EP-0 159 311, EP-0 519 901 or EP-0 674 531.
Further methods for inactivation of viruses also comprise the treatment by chemical or chemical/physical methods, e.g. with chaotropic substances according to WO 94/13329, DE 44 34 538 or EP-0 131 740 (solvent) or photoinactivatiion.
Nanofiltration also constitutes a preferred method for depleting viruses within the scope of the present invention.
As the anion exchanger, in principle, all anion exchangers may be used which have an affinity to heparin or heparirolds, such as, e.g. cellulose-based anion exchangers with diethylaminoethyl-groups (DEAE-Sephacell®, DE32, DE52 and the like or Express Ion D; all from Whatman) or with CH
2
N
+
(CH
3
)
3
Hetzl Ernst
Linnau Yendra
Matthiessen H. Peter
Neppl Silvia
Schönhofer Wolfgang
Baxter Aktiengesellschaft
Meller Mike
Naff David M.
LandOfFree
Method for purification of antithrombin III using an anion... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for purification of antithrombin III using an anion..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for purification of antithrombin III using an anion... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2829968