Method for providing on demand service measurements

Telecommunications – Transmitter and receiver at same station – Radiotelephone equipment detail

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S067150, C379S242000

Reexamination Certificate

active

06185439

ABSTRACT:

FIELD OF THE INVENTION
The invention pertains to the field of wireless telecommunications systems. More particularly, the invention pertains to a method and apparatus for a user to obtain on-demand service measurements of system usage.
BACKGROUND OF THE INVENTION
The Lucent Technologies Autoplex® Cellular Telecommunications System System-1000 is a complete wireless telecommunications system whose major components include the Executive Cellular Processor (ECP) Complex, a 5ESS-2000® Digital Cellular Switch (DCS), and a plurality of cell sites. Autoplex® and 5ESS-2000® are registered trademarks of Lucent Technologies.
Service Measurements (SM) is a SM tool which allows a customer the ability to monitor call traffic and performance of their system which in turn helps them make the necessary adjustments via Recent Change/Verify forms to add new equipment, adjust existing resources, adjust timer values, re-try attempts etc. to obtain maximum performance from the system.
The CCS is the traditional unit of measurement for expressing switched traffic load. A CCS unit represents one hundred (C-Roman numeral for 100) call (C) seconds (S). Traffic components (lines, trunk, calls, etc.) are scanned every 100 seconds. Each time a busy condition is found, a counter is incremented. Thirty-six 100-second scans are completed in an hour (1 Hour=3600 Seconds=36 CCS). At the end of each hour, the measuring device is recycled. If one call is busy for 30 minutes during an observation interval, a usage of 18 CCS will be measured. However, if 18 calls are busy for 100 seconds each in the observation period, 18 CCS will also be measured. Therefore, usage is a function of the number of calls and duration of time (holding time) each call is busy.
The Erlang is a well-established international unit of traffic measurement equal to the average number of busy resources or, equivalently, the average resource usage expressed in some arbitrary unit of time. Erlangs need not be referenced to any specific time interval. However, the unit of time used to express usage or call rate must always be the same unit used to express holding time and observation interval. Since traffic-engineered components are sized for a busy-hour load, a 1 hour time interval will be the base for all Erlang units used. Therefore, 1 unit of Erlang usage is equal to 36 units of CCS usage. Consider a simple example of a system that generates 3000 calls over a 1 hour observation period with an average holding time of 200 seconds per call. The traditional CCS usage would be the product of calls times holding time divided by 100: (3000 calls)(200-second holding time)/100=6000 CCS. To describe the traffic usage in units of Erlangs, the calls times holding time product would be divided by the observation interval in seconds (3600 seconds): (3000 calls) (200-second holding time)/3600=167 Erlangs.
All usage counts are stored in units of 1/100 Erlangs, unless specified otherwise (i.e., divide the usage count by 100 to get Erlangs). A usage of 1 Erlang would result if one trunk within a 3 trunk group was busy for one hour. In this case, “100” would be stored in the SM data files on disk. Similarly, if 200 trunks within a trunk group were busy for one hour, 200 Erlangs would result and “20,000” would be recorded in the SM data files on disk. The usage for a resource is determined by looking at the number of facilities (for example, trunks) in use every 10/100 second cycle, and accumulating this number.
Service measurement data are collected from the system's components, including the ECP, DCS's, cell sites, micro-cell sites, link nodes such as the Cell Site Node (CSN), Digital Switch Node (DSN), and Inter-Cellular Node (ICN), and other nodes that make up the telecommunications system, such as the Direct Link Node (DLN), the Inter-processor Message Switch/Common Network Interface (IMS/CNIO), and the Signaling System
7
(SS
7
). Service Measurements also allows customers to forecast or anticipate the future needs of their system so they can position themselves to offer the best quality service to the end-user. Currently, SM data are provided on an hourly basis, which does not allow the user to look for peaks, or enable the user to view the results of changes they have made on their system in a shorter interval. Customers have shown a need to view a subset of their SM counts which are related to both changes they have made in their system, and to show peaks in system resources in a shorter time frame than the current hourly interval.
SUMMARY OF THE INVENTION
This invention allows a user, through the use of a Web based (either intra or inter net) browser, to collect and view Service Measurement data in near real time via a web page. At least five invocations of the SM tools are supported at any one time. Once the maximum number of invocations is reached, new (additional) users are given an error and told to try at a later time. The SM tool reports Service Measurements traffic count data which lends itself to this shorter reporting period, and not Plant Measurements or special studies data. The invention allows the user to collect either a single SM count or a grouping of SM counts. The collection interval is user defined, being either a single snapshot or a programmable interval for a time lapse display of the SM count(s). If a user selects the programmable interval feature, the user is able to set the collection interval via the web page. A single display screen allows the user to display the count(s) requested. If multiple counts are requested, a minimum of 10 counts are displayed per screen. If the programmable interval is selected, the user is able to view at least four time intervals of the counts selected at any one time. The user is informed of any corruption of the data being displayed.
Briefly stated, in a digital switching network system wherein service measurements are periodically automatically collected, a user interfaces with the network via a Web browser to select those traffic counts of interest for on-demand sampling. The user designates whether the selected traffic counts are retrieved as a single sample or as a periodic sample. When the traffic counts are to be retrieved as a periodic sample, the user designates a period for the periodic sample. The system determines the locations where the traffic counts resides in the network, retrieves the traffic counts from their locations, and displays the traffic counts to the user.
According to an embodiment of the invention, a method for a user to obtain on-demand service measurements in a digital switching network wherein service measurements are periodically automatically collected includes (a) selecting at least one traffic count; (b) providing a choice to the user whether the at least one traffic count is to be retrieved as a single sample or as a periodic sample; (c) determining a location where the at least one traffic count resides in the network; (d) retrieving the at least one traffic count from the location; and (e) displaying the at least one traffic count to the user.
According to an embodiment of the invention, an apparatus for a user to collect on-demand service measurements in a digital switching network wherein service measurements are periodically automatically collected includes selection means for the user to select at least one traffic count to be collected; means for providing a choice to the user whether the at least one traffic count is to be retrieved as a single sample or as a periodic sample; determining means, associated with the selection means, for determining a location where the at least one traffic count resides in the network; means, associated with the selection means and the determining means, for retrieving the at least one traffic count from the location; and means for displaying the at least one traffic count to the user.
According to an embodiment of the invention, an apparatus for a user to collect on-demand service measurements in a digital switching network wherein service measurements are periodically automatica

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for providing on demand service measurements does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for providing on demand service measurements, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for providing on demand service measurements will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2563222

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.