Plastic and nonmetallic article shaping or treating: processes – With severing – removing material from preform mechanically,... – Making hole or aperture in article
Reexamination Certificate
1999-03-29
2001-03-20
Tentoni, Leo B. (Department: 1732)
Plastic and nonmetallic article shaping or treating: processes
With severing, removing material from preform mechanically,...
Making hole or aperture in article
C264S293000, C264S322000
Reexamination Certificate
active
06203738
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to a process for consolidating a man-made structural panel, and more particularly to a process for consolidating a man-made cellulosic panel having fiber-void regions to form a lightweight structural panel while achieving a substantially uniform density in the panel. More particularly, the present invention is directed to a method and apparatus for consolidating a fiberboard mat into a consolidated panel while redistributing fibers during consolidation, to achieve uniform density, while providing fiber-void regions, for lighter weight by consolidating a fiberboard mat against a fiber distribution die.
BACKGROUND OF THE INVENTION AND PRIOR ART
Man-made consolidated boards include hardboard, chip board, particle board, panel board, acoustical board, insulation board and the like. The uses of such boards depend upon the physical characteristics, such as the density of the board and any exterior embossing or decorative effect applied thereto.
There are two principal processes for the manufacture of man-made boards—the wet process and the dry process. In the wet process, the raw material is uniformly blended in a head box with copious quantities of water to form a slurry. The slurry is deposited onto a water-pervious support member, generally a Fourdrinier wire, where much of the water is removed leaving a wet mat of cellulosic material. The wet mat is transferred from the pervious support member and consolidated under heat and pressure to form the board. The dry process is similar to the wet process except that the cellulosic fibers are first coated with a thermosetting resin binder, such as a phenolformaldehyde resin, and are then randomly distributed into a mat by distributing the resin-coated fibers onto a support member.
The process of embossing a wet or dry mat in a platen press with a heated embossing plate is well known, especially in the manufacture of fiberboards, such as hardboard. An embossing plate is made with a surface contour or protrusions of a desired design, such as wood graining. The heated embossing plate is pressed against the surface of the wet mat under sufficient pressure to impress the plate design into the surface of the panel and thereby consolidate the wet mat into a decorative man-made board having varying thicknesses. The fiberboard mat that is hot-pressed, as inserted into the press, has a uniform thickness and a uniform basis weight. During hot-press embossing, areas of the fiberboard mat adjacent to the embossing plate protrusions necessarily become more compressed than flat or planar areas surrounding the embossed areas, and the consolidated, embossed product is, therefore, more dense at the embossed area.
The bonding necessary for cohesion and strength in a man-made board occurs during the consolidation of the board. Prior to hot-pressing, the loosely disassociated cellulosic fibrous mat is quite weak, but after hot-pressing the mat into its final configuration, it is very powerfully held together by the bonding which occurs during hot-pressing. Hot-pressing during consolidation causes a welding or coalescing of the cellulose fibers at the surface of the product so that the surface portion consists of wood remade in modified form.
The present invention is directed to a method of manufacturing a consolidated, structural panel by hot pressing a wet or dry fibrous mat in a heated press, against a back surface die that includes a plurality of upwardly extending projections to provide fiber-void regions in the back surface of the panel, for material savings and to provide lateral flow of fibers to aid in maintaining more uniform density throughout the panel. The panel thus consolidated has a relatively uniform density throughout its thickness due to lateral flow of fibers, as the fibers slide around an outer surface of the back surface die projections as the projections are pressed upwardly into the back surface of the structural panel. A more uniform density is achieved during consolidation, with die projections inserted into the back surface of the panel, since lateral compressive forces, generated as a result of the surface angle of the die projections, are substantially equal to the compressive force normal to the dies surfaces, as shown in FIG.
2
. Forces on the fibers, as the die projections are forced in the mat, can be likened or modeled by compressible springs, A, B and C. As fiber is compressed in a normal (to die) direction the fiber will slide down the face of the pins until the lateral compressive force in the fibers between the projections, as indicated by compression of spring C, produces a balancing force. Adjustment of projection angle, &agr;, allows adjustment of the ratio of normal compression to lateral compression forces, and will allow for compensation for frictional effects from the outer projection faces.
The prior art includes the use of blades or pointed projections and the like, to tenderize or to provide a decorative surface to lumber and to densify weaker areas of consolidated fiberboards. The following patents are examples of tenderizing or decorating wooden articles: Voigt U.S. Pat. No. 839,680; Campbell III, et al. U.S. Pat. No. 3,231,455; and Clarke, et al. U.S. Pat. No. 4,790,360. This Assignee's Rinker U.S. Pat. No. 5,614,231, teaches that rigid fiberboard mats can be compressed into embossed door facings using a “push”, or door panel embossed design, to provide denser areas in sharply embossed design areas to prevent “soft” edges. This Assignee's Beuving, et al. U.S. Pat. No. 5,129,435 discloses cutting incisions into a fiberboard mat, prior to hot press consolidation thereof, to condition the mat, by disrupting the fiber network and make the fibers more pliable. However, since the fibers are not held in any particular disrupted location during consolidation of the mat, in accordance with the Beuving, et al. process, substantially better density uniformity is not achieved.
SUMMARY OF THE INVENTION
In brief, the present invention is directed to a method of hot pressing a fiberboard mat that has a uniform thickness and a uniform basis weight to form a consolidated panel having void spaces within at least a portion of its thickness, while achieving more uniform density in regions where fiber extends from a top surface to a bottom surface of the panel as well as regions that include void spaces that extend into the undersurface of the panel.
In accordance with the principles of the present invention, fiber flow means or fiber distributing means, such as upwardly extending pins, is provided, against a back surface of the fiberboard mat, to penetrate into an undersurface of the fiberboard mat when the press is closed, for causing lateral flow of fiberboard fibers in a lateral or horizontal direction toward a base of the upwardly extending pins, and for holding the displaced fibers in position, during consolidation, until the fiberboard mat is completely consolidated and the binder resin is cured. The displaced fibers are maintained in position, laterally displaced from their original position in the non-consolidated mat, during consolidation, thereby achieving more uniform density in fiber-filled panel regions and the regions of the panel adjacent to fiber-void volumes corresponding in size and shape to the penetrated die projections.
Accordingly, one aspect of the present invention is to provide a method and apparatus for hot-press consolidation of a fiberboard mat into a consolidated panel having void regions, while achieving substantially uniform density throughout the fiber-filled regions of the panel.
Another aspect of the present invention is to provide a method and apparatus for hot-press consolidation of a fiberboard mat by subjecting the mat to heat and pressure against a fiber distributing die that is capable of causing the lateral flow or lateral displacement of fibers, and holding the laterally displaced fibers in position during consolidation of the fiberboard mat into a structurally sound, consolidated panel, such that the product has a substantially
Marshallo, O'Toole, Gerstein, Murray & Borun
Masonite Corporation
Tentoni Leo B.
LandOfFree
Method for providing more uniform density in the manufacture... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for providing more uniform density in the manufacture..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for providing more uniform density in the manufacture... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2500633