Method for providing a jewel bearing for supporting a pump...

Pumps – Motor driven – Pump within rotary working member

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C417S423120, C417S053000

Reexamination Certificate

active

06254359

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to rotary blood pumps. More specifically, the present invention relates to a ventricle assist device having a bearing system for supporting long-term high speed rotor rotation with minimal friction and heat build-up.
BACKGROUND ART
Ventricle assist devices are frequently used to boost blood circulation to assist a heart which still functions but is not pumping sufficient blood for adequate circulation. The estimated need for a reliable long-term ventricle assist device (VAD) is presently projected at between 50,000 and 100,000 patients per year in the U.S. alone.
At the present time, rotary blood pumps are often the preferred type of pump for use as a ventricle assist device as compared to other more complex types of pumps which may use pistons, rollers, diaphragms, compliance chambers, and so forth. This is at least partially because rotary pumps may be manufactured in larger numbers at a relatively lower cost and are typically less complex than other types of pumps. The more complex pumps, on the other hand, may cost up to $50,000 per unit Furthermore, availability of large numbers of complex pumps, as is required by the sizeable population that could benefit from such pumps, is limited by high manufacturing, operating, and maintenance costs. Therefore, rotary blood pumps are increasingly used not only for ventricular assist applications, but also for cardiopulmonary bypass procedures and percutaneous cardiopulmonary support applications in emergency cases.
Clinical uses of rotary pumps are normally limited to a few days owing to shortcomings of the devices. A non-comprehensive list of such problems or shortcomings would include the following: (1) blood damage which may occur when blood comes into contact with rotor bearings due to bearing heat or being forced through small clearances, (2) the need for bearing purge systems which may require percutaneous (through the skin) saline solution pump systems, (3) bearing seizure resulting from the considerable thrust and torque loads, or from dried blood sticking on the bearing surfaces, (4) problems of blood damage (hemolysis) and blood clotting (thrombosis) caused by relative rotational movement of the components of the pump, (5) pump and control size and shape limitations necessary for implantation or convenient mobility, (6) weight limitations for implantation to avoid tearing of implant grafts due to inertia of sudden movement, (7) difficulty in coordinating and optimizing the many pump design parameters which may affect hemolysis, (8) high power consumption that requires a larger power supply, (9) motor inefficiency caused by a large air gap between motor windings and drive magnets, (10) heat flow from the device to the body, (11) complex Hall Effect sensors/electronics for rotary control, (12) the substantial desire for minimizing percutaneous (through the skin) insertions including support lines and tubes, (13) large pump and related hose internal volume which may cause an initial shock when filled with saline solution while starting the pump, and other problems.
Existing bearing systems for externally used rotary blood pumps may have small rolling element bearings such as ball bearings. Rolling element bearings require a shaft seal to prevent blood entering the bearing voids between the rolling elements. If blood enters the bearing voids, it coagulates and may cause bearing seizure by interfering with the rolling elements. Shaft seals complicate pump design, decrease pump reliability, and reduce pump life.
Some implantable blood pumps utilize pivot bearings. Pivot bearings can operate immersed in blood without a blood seal. However, to maintain the precise rotation required in blood pumps to minimize red blood cell damage, such pivot bearings utilize complicated shaft pre-load mechanisms to eliminate shaft end-play. Shaft pre-load mechanisms are prone to seizure by coagulated blood. They also increase bearing wear.
Other blood pump bearing systems utilize journal bearings flushed with fluids such as saline solution or blood. Journal bearings have minimal wear, but require a separate thrust bearing that complicates pump design. Journal bearings require fluid pressure to support the loads. If the pump utilizes saline solution rather than blood as the bearing fluid, then pump design is significantly complicated by the need for a separate reservoir, flow lines, and the like. If the pump utilizes blood as bearing fluid, then potential pump seizure caused by coagulated blood is a serious concern. In addition, blood flow through a journal bearing is exposed to a high shear environment. The high shear environment may damage the blood or generate micro-clots that are washed into the patients blood stream. Finally, journal bearings of the size used in blood pumps require very precise alignment that increase manufacturing complexity, and increase costs.
Although a significant amount of effort has been applied to solving the problems associated with rotary pumps, there is still a great demand for a safe, reliable, and durable blood pump that may be used for longer term applications.
The following patents describe attempts made to solve problems associated with rotary blood pumps including ventricle assist devices.
U.S. Pat. No. 4,625,712 to R. K. Wampler discloses a full-flow cardiac assist device for cardiogenic shock patients which may be inserted into the heart through the femoral artery and driven via flexible cable from an external power source. A catheter attached to the pump supplies the pump bearings with a blood-compatible purge fluid to prevent thrombus formation and introduction of blood elements between rotating and stationary elements. Due to the very small diameter of the pump, rotational speeds on the order of 10,000 to 20,000 rpm are used to produce a blood flow on the order of about four liters per minute.
U.S. Pat. No. 4,957,504 to W. M. Chardack discloses an implantable blood pump for providing either continuous or pulsatile blood flow to the heart. The pump includes a stator having a cylindrical opening, an annular array of electromagnets disposed in a circle about the stator concentric with the cylindrical opening, a bearing carried by the stator and extending across the cylindrical opening, and a rotor supported by the bearing. The rotor is in the form of an Archimedes screw and has a permanent magnet in its periphery which lies in the same plane as the circular array of electromagnets and is driven in stepper motor fashion.
U.S. Pat. No. 4,944,722 to J. W. Carriker discloses a percutaneously insertable intravascular axial flow blood pump with a rotor extension and drive cable fitting so designed that the thrust bearing surfaces of the purge seal and cable fitting can be pre-loaded.
U.S. Pat. No. 4,817,586 to R. K. Wampler discloses an intravascular flow blood pump with reduced diameter having blood exit apertures in the cylindrical outside wall of the pump housing between the rotor blades and the rotor journal bearing.
U.S. Pat. No. 4,908,012 to Moise et al. discloses an implantable ventricular assist system having a high-speed axial flow blood pump. The pump includes a blood tube in which the pump rotor and stator are coaxially contained, and a motor stator surrounding the blood duct. A permanent magnet motor rotor is integral with the pump rotor. Purge fluid for the hydrodynamic bearings of the device and power for the motor are preferably percutaneously introduced from extra-corporeal sources worn by the patient.
U.S. Pat. No. 4,779,614 to J. C. Moise discloses an implantable axial flow blood pump which includes a magnetically suspended rotor of relative small diameter disposed without bearings in a cylindrical blood conduit Neodymium-boron-iron rotor magnets allow a substantial gap between the static motor armature and the rotor. Magnetically permeable strips in opposite ends of the pump stator blades transmit to Hall sensors variations in an annular magnetic field surrounding the rotor adjacent the ends of the pump stator blades.
U.S. Pat. No. 5,049,1

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for providing a jewel bearing for supporting a pump... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for providing a jewel bearing for supporting a pump..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for providing a jewel bearing for supporting a pump... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2435924

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.