Method for protecting optical fibers embedded in the armor...

Optical waveguides – Optical transmission cable – Tightly confined

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S100000, C385S102000, C385S104000, C385S106000, C385S107000

Reexamination Certificate

active

06591046

ABSTRACT:

STATEMENT OF GOVERNMENT INTEREST
The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.
CROSS REFERENCE TO RELATED PATENT APPLICATIONS
Not applicable.
BACKGROUND OF THE INVENTION
(1) Field of the Invention
This invention generally relates to a method and device for protecting optical fibers embedded in the armor of a tow cable. More particularly, the invention relates to the protection of the optical fibers within a tubular housing, such that incorporation of the protected optical fibers and tubing into the armor of a tow cable will prevent damage to the fibers.
(2) Description of the Prior Art
The current art for protecting optical fibers used in a tow cable is to house the optical fibers within a stainless steel tube.
An example of the prior art is shown in
FIG. 1
as including a stainless steel tube
30
and optical fibers
32
housed within the stainless steel tube. The arrangement of
FIG. 1
is that which is currently used in tow cables which require optical fibers. Tube
30
and optical fiber
32
combination may be used in the center of a cable core (not shown) or helixed in among electrical conductors (not shown). However, the stainless steel tube
30
, as currently manufactured, has a fairly thin wall and may not survive the contact stresses imposed by the galvanized steel armor strength wires (if the tube were located among the armor wires) as loads are imposed on the tow cable.
Thus, it has been discovered that a problem exists in the art whereby it is necessary to further protect the stainless steel tube in order to completely protect the optical fibers, particularly when the optical fibers are embedded in the armor wires of a tow cable. Although it might be thought that an increase to the thickness of the wall of the stainless steel tube would provide the protection needed, such is not the case. Due to the laser-welding process that is used to manufacture the tube, it may not be possible to increase the thickness to protect sufficiently the fibers from the stresses imposed during towing.
Holmberg's patent (U.S. Pat. No. 5,212,755) describes the method for placing a stainless steel tube among the armor wires in a tow cable, with optical fibers inside the stainless steel tube. Ruffa has extended this idea in a patent application which has embedded sensors along the length of the optical fibers to make measurements (temperature, strain, etc.).
The following patents, for example, disclose various types of protection of optical fibers, but do not disclose the protection of optical fibers housed within a stainless steel tube, the optical fibers being embedded in the armor of a tow cable, as does the present invention.
U.S. Pat. No. 4,818,060 to Arroyo;
U.S. Pat. No. 4,952,012 to Stamnitz;
U.S. Pat. No. 4,971,420 to Smith;
U.S. Pat. No. 5,212,755 to Holmberg;
U.S. Pat. No. 5,259,055 to Cowen;
U.S. Pat. No. 5,440,660 to Dombrowski et al.; and
U.S. Pat. No. 6,041,153 to Yang.
Specifically, Arroyo discloses a flame and smoke resistant optical fiber cable having a relatively small diameter. The cable includes a core comprising a ribbon array or a plurality of individual fibers and a sheath system. The sheath system includes an impregnated fiber glass tape which has been wrapped about the core. The tape is impregnated with a solution system which comprises a micaceous constituent, a fluoropolymer constituent and a lubricant such as silicone. The impregnated system provides the tape and hence the cable with unexpectedly superior fire retardation and smoke resistance properties so that the cable is suitable for plenum and riser use. An all dielectric strength member system is disposed between the tape and a plastic jacket.
The patent to Stamnitz discloses an electro-opto-mechanical cable including at least one thinwall steel alloy tube containing at least one single mode fiber and a void filling gel to assure the capability for transmitting low-noise optical phase data. A dielectric annulus and an electrically conductive layer disposed therein helps further assure watertight integrity and power or electrical signal transfer. An optional double-layer contrahelical or three or four layer, torque balanced, steel wire strength member provides additional protection as well as capability to be towed, deployed and recovered from the seafloor at abysmal depths. The steel armor and cable core interface eliminates all intersticial spaces associated with the armor wires to produce a firm, hard cable that experiences minimal residual strain (creep) due to extensive load cycling. A pressure extruded outer jacket aids in assuring the protection of the individual steel wires from point loadings and from strength degradation due to corrosion. Further, the integral steel armor and jacket structure provides protection for the electro-optic core from abrasion against rock or coral at cable suspension points during sustained cable strumming.
Smith discloses an optical fiber cable especially for submarine use and has a core surrounded by a layer of strength members which include both wires and laser-welded metallic tubes containing the optical fibers.
Holmberg discloses an armored fiber optic cable having both optical fibers and armor wires located outside the cable core in position where the fiber optics experience low strains when the cable is under axial stress. In one embodiment, metal armor wires and optical fibers embedded in metal tubes are arrayed in one or more layers about and outside the cable core. In another embodiment, KEVLAR™ armor wires and optical fibers embedded within a hard composite shell are arrayed in one or more layers about and outside the cable core, and a layer of KEVLAR™ armor is provided surrounding the one or more layers. Holmberg does not use a composite shell for the steel tube as is done in the present invention.
The patent to Cowen et al. discloses a fiber optic microcable having a uniform cross sectional dimension which may be manufactured in continuous lengths that exceed 10 kilometers. The microcable is comprised of an optical fiber core, a buffer surrounding the core, and a protective sheath surrounding the buffer consisting of an electromagnetic radiation-cured resin impregnated with fibers suspended in the resin to enhance the resistance of the microcable to physical damage. The microcable is fabricated by soaking the fibers in an electromagnetic radiation-curable resin, placing the wetted fibers around the core and buffer to form a matrix, and then irradiating the matrix with electromagnetic radiation to cure the resin.
Dombrowski et al. discloses a fiber-reinforced optical microcable comprised of a buffered optical waveguide coated with a fiber-reinforced protective sheath made of a fiber-reinforced, ultraviolet light-cured resin over which is formed an ultraviolet light-cured resin overcoat. The protective sheath is manufactured by soaking reinforcing fibers in the UV-curable resin, placing the wetted fibers around the buffered optical waveguide, feeding both the fibers and buffered optical waveguide through a die, and curing the resin with ultraviolet light. Then, an ultraviolet light-cured resin is flow-coated over the protective sheath and cured with ultraviolet light to complete the microcable.
The patent to Yang discloses a composite-reinforced buffer tube for an optical fiber cable. The composite reinforced buffer tube comprises an extruded elongated thermoplastic matrix having an elongated, substantially continuous, reinforcement incorporated therein along its length between its inside and outside walls. The substantially continuous reinforcing is co-extruded with the elongated thermoplastic matrix and bonded to the matrix at interface regions therebetween. The material forming the reinforcement has a higher modulus of elasticity than the material forming the thermoplastic matrix, and the reinforcement material has a coefficient of thermal expansion that is less than that of the thermoplastic matri

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for protecting optical fibers embedded in the armor... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for protecting optical fibers embedded in the armor..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for protecting optical fibers embedded in the armor... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3084764

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.