Method for producing triethylenediamines and piperazines

Organic compounds -- part of the class 532-570 series – Organic compounds – Nitrogen attached directly or indirectly to the purine ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C544S358000

Reexamination Certificate

active

06350874

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method for producing triethylenediamines and piperazines. Particularly, it relates to a method for effectively and efficiently producing triethylenediamines and piperazines from an amine compound by using an improved crystalline aluminosilicate catalyst.
2. Discussion of Background
Triethylenediamines are useful compounds which are widely used as e.g. a foaming catalyst or an epoxy resin curing accelerator in production of a polyurethane, and piperazines are useful compounds which are widely used as e.g. intermediates for syntheses of pharmaceuticals and agricultural chemicals, or an urethane catalyst.
Such triethylenediamines and piperazines can be obtained usually by cyclization of an amine compound by using a catalyst.
As the catalyst, zeolites have been known. For example, JP-A-50-58096 discloses a method for obtaining triethylenediamine and piperazine by using an A-type zeolite as the catalyst and contacting N-(2-aminoethyl)piperazine with said catalyst at a temperature of from 250 to 450° C. in a gas phase. JP-A-60-260574 discloses a method for obtaining triethylenediamine by using a high silica zeolite of a composition having a molar ratio of silica to alumina of at least 20, as the catalyst, and contacting N-(2-aminoethyl)piperazine or N-(2-hydroxyethyl)piperazine with said catalyst at a temperature of from 250 to 550° C. in a gas phase. JP-A-62-228079 discloses a method for obtaining triethylenediamine by using, as the catalyst, a crystalline metal silicate having a molar ratio of silica to alumina of at least 12 and having a calcination treatment applied thereto in the air atmosphere at a temperature of from 400 to 600° C., and contacting e.g. monoethanolamine, ethylenediamine, N-(2-aminoethyl)piperazine or N-(2-hydroxyethyl)piperazine with said catalyst at a temperature of from 100 to 500° C. JP-A-63-122654 discloses a method for obtaining triethylenediamine by using, as the catalyst, a crystalline metal silicate having a molar ratio of silica to alumina of at least 12 and having a calcination treatment applied thereto in the air atmosphere at a temperature of from 400 to 600° C., and contacting e.g. monoethanolamine, ethylenediamine, piperazine, N-(2-aminoethyl)piperazine or N-(2-hydroxyethyl)piperazine with said catalyst at a temperature of from 100 to 500° C. under an absolute pressure of at least 30 kPa(3 kg/cm
2
). JP-A-1-132587 discloses a method for obtaining triethylenediamine by using a pentasyl-type zeolite as the catalyst, and contacting piperazine with said catalyst at a temperature of from 250 to 550° C. JP-A-1-143864 discloses a method for obtaining triethylenediamine by using a pentasyl-type zeolite as the catalyst, and contacting ethylenediamine, diethylenetriamine or 2-aminoethanol with said catalyst at a temperature of from 250 to 550° C. JP-A-3-127764 discloses a method for obtaining triethylenediamine by using at least one molecular sieve selected from the group consisting of silica molecular sieves, non-zeolite type molecular sieves and zeolite type molecular sieves, as the catalyst, and contacting e.g. N-(2-aminoethyl)piperazine, N-(2-hydroxyethyl)piperazine, piperazine, piperazine and monoethanolamine, or piperazine and ethylenediamine, with said catalyst at a temperature of from 250 to 500° C. JP-A-3-133971 discloses a method for obtaining triethylenediamine by using a pentasyl type zeolite containing an alkali metal or having aluminum in the zeolite framework isomorphically substituted by iron, as the catalyst, and contacting ethylenediamine with said catalyst at a temperature of from 270 to 420° C. Further, JP-A-5-17460 discloses a method for producing triethylenediamine from an amine compound and a catalyst consisting of a crystalline aluminosilicate having calcination treatment applied thereto at a temperature of from 500 to 950° C. in a water vapor atmosphere. JP-A-5-17461 discloses a method for producing triethylenediamine from an amine compound and a catalyst consisting of a crystalline aluminosilicate having calcination treatment applied thereto at a temperature of from 610 to 950° C. in the air atmosphere. JP-A-5-17462 discloses a method for producing triethylenediamine from an amine compound and a crystalline aluminosilicate catalyst having an inorganic salt supported thereon. JP-A-10-109964 discloses a method for producing triethylenediamine from an amine compound and a zeolite catalyst having basic treatment applied thereto. JP-A-10-182562 discloses a method for producing triethylenediamine from an amine compound and a surface acidity-deactivated zeolite catalyst. Further, JP-A-10-195029 discloses a method for producing triethylenediamine from a triethylenediamine reaction solution having an ethylated compound added thereto and a condensation/cyclization selective zeolite.
As mentioned above, many methods for producing triethylenediamine by using a zeolite catalyst have been disclosed. However, there are following problems in the case where the zeolite catalyst is used industrially.
Namely, in the method as disclosed in JP-A-50-58096, the selectivities of triethylenediamine and piperazine are low, whereby the yields cannot be kept high, and the decrease in activity of said catalyst with time is significant, whereby the catalyst can not be used industrially. In the method as disclosed in JP-A-60-260574, although the selectivities of triethylenediamine and piperazine are high, the conversion is low, whereby the yield can not be kept high, and further, the decrease in activity of said catalyst with time is significant, whereby it is not economically advantageous to use said catalyst as an industrial catalyst. In the methods as disclosed in JP-A-62-228079 and JP-A-63-122654, although the selectivity can be increased when the conversion is low, the selectivity will decrease when the conversion is increased, whereby the desired compound can not be obtained with a high yield, and similarly, the decrease in activity of said catalyst with time is significant, and accordingly, said catalyst can hardly be used as an industrial catalyst. In the methods as disclosed in JP-A-1-132587 and JP-A-1-143864, although the selectivity is high, the conversion is low at that time and the yield of the desired compound is thereby low, and similarly, the decrease in activity of said catalyst with time is significant. In the method as disclosed in JP-A-3-127764, although the selectivity of triethylenediamine is high, the conversion is low, whereby the yield of triethylenediamine can not be kept high, and similarly, the decrease in activity of said catalyst with time is significant. In the method as disclosed in JP-A-3-133971, in the case of the alkali metal ion-containing pentasyl zeolite, although the selectivity is high, the conversion is low, and the yield of the desired compound is thereby low, and in the case of the pentasyl zeolite having aluminum in the zeolite framework substituted by iron, although the conversion is improved and the selectivity is high, and the yield is thereby improved, but the catalyst is a special zeolite, its production method is complicated and the condition therefore is severe, and its production is costly, and such is not advantageous economically. Further, although the decrease in activity with time is reduced as compared with a conventional catalyst, the decrease is not at an industrially tolerable level. In the methods as described in JP-A-5-17460, JP-A-5-17461 and JP-A-5-17462, although the yield of triethylenediamine is improved, the decrease in activity of the catalyst with time is significant. In the methods as disclosed in JP-A-10-109964 and JP-A-10-182562, the yield of triethylenediamine is low, and the decrease in activity of the catalyst with time is significant, and accordingly, the method can scarcely be used industrially. Further, the method as disclosed in JP-A-10-195029 comprises two-step reaction, whereby the operation is complicated and the equipment cost is high, and further, the decrease in activity of the catalyst is

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for producing triethylenediamines and piperazines does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for producing triethylenediamines and piperazines, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for producing triethylenediamines and piperazines will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2968977

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.