Optics: measuring and testing – By light interference – Using fiber or waveguide interferometer
Reexamination Certificate
2001-10-13
2003-07-01
Turner, Samuel A. (Department: 2877)
Optics: measuring and testing
By light interference
Using fiber or waveguide interferometer
Reexamination Certificate
active
06587207
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a method for generating time markers of arbitrary points on moving components and to an optical trigger device for generating such time markers.
BACKGROUND INFORMATION
In the development of modern turbine engines, for example, oscillation measurements on the highly loaded blades of the rotors are very important. Critical oscillations must be identified in sufficient time. At the same time, the measurements supply data for the design programs and for estimating the service life of the blades. To date, the measurements have, in the majority of cases, been performed using strain gauges, which is associated with considerable costs and lead times due to the necessity for complex cabling which is resistant to centrifugal force and a telemetry system for signal transmission.
Optical measurement methods have been developed in order to avoid the difficulties outlined above. Trigger probes are mounted at different peripheral positions in the housing of the component to be measured, such as, e.g., a rotor blade of a turbine engine, with which it is possible to measure the travel times of the blades between the probes. In the absence of oscillation, the travel times are determined by rotational speed, rotor radius and peripheral position of the probes. Oscillations result in a change in the travel times since the blades pass the probes earlier or later—depending on the instantaneous phase angle of the oscillatory movement. Amplitude and frequency of the oscillations are determined from the travel time deviations from the undisturbed values.
In order to generate the time or position signals of the blades, probes are built into the housing above the rotor, which probes supply a signal when the tip of a blade passes through the measurement region of the probes. Time markers are derived from the resultant analog signals by electronic devices, which time markers are correlated with a defined position of the blade tips. In special cases, the probes can also project into the flow channel. Trigger signals are then derived from the leading or trailing edge of the blades.
Conventional probe configurations have a significant disadvantage in that time markers can be generated only at the edges of the blades, normally at a location on the blade tip. Oscillatory forms actually having a node are not detected. Moreover, when the probes are built into the flow channel for measurement on the leading and trailing edge of the blades, the flow is considerably disturbed.
It is therefore an object of the present invention to provide a method for generating time or precision markers which may generate time markers at arbitrary points on moving components. It is another object of the present invention to provide a largely flexible application and, in particular, free position-ability of the probes. Furthermore, it is an object of the present invention to provide an apparatus for performing the method.
SUMMARY
The present invention provides a method for generating time markers of arbitrary points on moving components, wherein light from a broadband light source with a correspondingly short coherence length is split into two paths, namely a measurement light path and a reference light path, and is coupled into two optical waveguides, the light of the reference light path is at least partially coupled back and the light of the measurement light path is focused at a measurement point and reflected by the component passing through the focus, wherein the light distances in the measurement light path up to the focus and in the reference light path up to the coupling-back plane are of the same length within the coherence length of the radiated light, wherein the coupled-back light from the reference light path and the measurement light path is brought to interference and detected by a detector, and wherein a short modulation event occurs at the detector when the component passes through the focus.
The method according to the present invention uses a broadband light source. The light emitted by this light source is split into two paths by a beam splitter. One portion of the light is fed into a measurement optical waveguide and the other part is fed into a reference optical waveguide. The light of the measurement light path emerges at the end of the optical waveguide and is focused in front of the optical waveguide. The focus constitutes the measurement point. The light of the reference light path is at least partially coupled back. This may either be achieved directly at the end face of the optical waveguide or by a separate mirror.
If a moving component passes through the focus of the measurement light path, part of the light is reflected and coupled back into the measurement optical waveguide. The coupled-back portions of the measurement light path and of the reference light path are then brought to interference and detected by a detector.
At the detector, modulation of the light intensity occurs as a result of the interference of the two light paths when the light distances in the measurement light path up to the focus and in the reference light path up to the coupling-back plane are of the same length within the coherence length of the radiated light. Therefore, the arrangement is to be calibrated so that this condition is met precisely in the focus region of the measurement light path. If a component then passes through the light beam of the measurement light path at the focus, the intensity of the reflected light coupled back into the optical waveguide reaches a maximum. While the maximum is traversed, modulation of the light intensity momentarily occurs at the detector in accordance with the shortness of the coherence length of the light source, the modulation frequency being dependent on the wavelength of the light used and on the speed of the component. This modulation event may be used to derive a trigger pulse of high temporal accuracy.
A Michelson interferometer may be used as the beam splitter and for interference of the coupled-back light portions, it also being possible to use other interferometric arrangements.
The present invention provides an optical trigger device for generating time markers of arbitrary points on moving components, which includes a broadband light source with a correspondingly short coherence length, an arrangement configured to split the light from the light source into two paths, namely a measurement light path and a reference light path, which each include an optical waveguide and an arrangement configured to feed the light into the respective optical waveguides, an arrangement configured to focus the light emerging from the measurement optical waveguide at a measurement point, an arrangement configured to couple back the light of the reference light path, an arrangement configured for interference of the coupled-back light of the two paths, and a detector for detection of the interfering, coupled-back light.
The optical trigger device according to the present invention may be used to generate time markers of arbitrary points on moving components. The trigger device according to the present invention includes a broadband light source. The light emerging from this light source is split into two paths, namely a measurement light path and a reference light path.
The light of the measurement light path is fed into a measurement optical waveguide and the light of the reference light path is fed into a reference optical waveguide. Both optical waveguides lead to a probe. In this probe, the light emerges from the measurement optical waveguide and is focused at a measurement point. The light of the reference light path is at least partially coupled back into the reference optical waveguide again. This may be achieved either by reflection at the boundary surface of the optical waveguide or by a separate mirror.
If a component to be measured, for example, a rotor blade of a turbine engine, passes through the focus of the measurement light path, the light is partially reflected and coupled back into the measurement optical waveguide. The
Hessert Roland
Zielinski Michael
Ziller Gerhard
Connolly Patrick
Kenyon & Kenyon
MTU Aero Engines GmbH
Turner Samuel A.
LandOfFree
Method for producing time marks at any points on moving... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for producing time marks at any points on moving..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for producing time marks at any points on moving... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3027586