Method for producing surgical sponge device and product thereof

Package making – Methods – With contents treating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C053S435000

Reexamination Certificate

active

06711879

ABSTRACT:

BACKGROUND OF THE INVENTION
Sponges and sponge devices are currently in widespread use for the removal and management of liquids that are produced at or introduced to a surgical site. One form of such device, called a surgical spear, is typically used in the performance of micro-surgical procedures such as eye surgery, plastic surgery, hand surgery, and the like, and will generally consist of a small sponge element to which a plastic handle is molded. Ophthalmic sponge rings are used to help keep topical anesthesia in contact with the eye during surgery, and eye drains serve to automatically and continuously wick fluid away from a surgical site; pieces of sponge sheet are used as wipes for surgical instruments and the like.
It is of course of critical importance that a surgical sponge be both sterile and also at least substantially free from foreign matter that is loose or is subject to being dislodged. Even if the sponge material does not inherently contain fragments (as is true of sponges produced from synthetic resinous materials such as, for example, polyvinyl alcohol and polyvinyl acetal), it has been appreciated that particulates are produced when a sponge is cut to a desired shape; the problem is exacerbated when a point or other small dimension is produced on the sponge element. Such sponges and sponge devices are normally furnished in protective packaging which may, in certain instances, be made of a moisture-barrier material and sealed to prevent the passage of water vapor.
The surgical spear was originally developed in the late 1960's as a device having a compressed regenerated cellulose sponge element that would rapidly remove fluids from around the eye during ophthalmic surgery. When the sponge element of the spear was brought into contact with liquid (primarily saline, used to keep the eye from drying under hot operating room lights) it would rapidly absorb and expand to its full holding capacity, whereupon it was discarded and replaced by another spear to provide a fresh, compressed sponge element.
Drawbacks inherent in the use of cellulose sponge elements include their lack of biocompatibility and a high lint and fiber content. Moreover, particulates produced during cutting become embedded in the surfaces of the compressed sponge, and are especially susceptible to being released upon expansion of the sponge during use, ultimately tending to infect the eye, particularly when encapsulated, and necessitating antibiotic treatment.
Surgical spears having polyvinyl alcohol (PVA) sponge elements were introduced in the mid- to late 1970's. It was anticipated that PVA would replace cellulose as the sponge element of choice, because the material is biocompatible, contains no inherent lint or fiber, and produces substantially less debris when cut. However, PVA sponges failed to absorb and expand as quickly as cellulose and, being much less dense than cellulose, they lacked the stiffness that is desired to enable manipulation of tissue during surgical procedures. Factors such as these caused many surgeons to continue specifying the use of cellulose spears.
Although there have been few changes in the design and construction of surgical spears in the interim, the introduction of laser surgery has given new impetus to the demand for “particulate-free” sponge material. One such procedure is laser in situ keratomileusis (LASIK) surgery, which is a modification of the original Barraquer keratomileusis procedure. The LASIK procedure is considered to be superior for correction of high myopia, and is thought to overcome many problems associated with PRK; a more rapid stabilization of refraction is achieved, and postoperative pain is reduced. Also, Bowman's layer and the epithelium are preserved at the optical axis, which seems to result in the production of almost no haze.
There are as well, however, potential problems associated with LASIK procedures, starting with the use of the microkeratome and including performing the photoablation. Additional complications include incomplete disc resection thin flap, loss of flap, or bottomholing of the flap (albeit good surgical skills and better microkeratomes can minimize them). Laser decentration, displacement, wrinkling, and edema of the flap, and lipid or epithelial deposits within the interface may also occur.
In any of event, the introduction under the cornea of lint, fibers, or other fragments larger than a certain size can cause (in addition to pervasive foreign-body concerns) refraction of light, and can thereby seriously affect the vision of the patient; consequently, the presence of such matter cannot be tolerated. Even apart from its lack of biocompatibility, these constraints virtually preclude the use of cellulose spears during LASIK surgery. And while PVA sponge elements have a much reduced inherent debris content, and indeed manufacturers have heretofore regarded them to be fiber- and lint-free, it has now been appreciated that the requisite level of purity has not been afforded, especially in respect of the demands of surgeons performing LASIK procedures.
Richter et al. U.S. Pat. No. 3,566,871 is directed to a polyurethane sponge which, albeit designed for disposability, may be washed, resterilized, and reused. In accordance with the preferred method disclosed a recirculating line is provided to remove loose pieces of foam, following which the foam body passes under infrared lamps to remove water. The dry sponge is cut into the desired size, and the resultant sponge pieces are packaged and sterilized.
Vaughn U.S. Pat. No. 2,613,862 provides a method of packaging a sponge in a wet and expanded state. DeBusk U.S. Pat. No. 5,725,517 discloses a method for making a surgical sponge from a woven web, wherein cut edges of the sponge element are folded inwardly prior to washing. Georgevich U.S. Pat. No. 4,291,697 discloses a sponge having a handle, Smith U.S. Pat. No. 3,717,244 discloses a packaged surgical sponge, and Korteweg U.S. Pat. No. D421,302 discloses a surgical spear.
SUMMARY OF THE INVENTION
The broad objects of the present invention are to provide a novel method for the production of a surgical sponge product that is at least substantially free from particulates and other debris, and to provide a novel surgical sponge product having that characteristic.
More specific objects of the invention are to provide such a method and sponge product whereby and wherein the product is enclosed in a packaging component which may desirably be fabricated from a non-barrier material and/or left in an unsealed condition.
A further specific object of the invention is to provide a surgical product, and a surgical device incorporating it, and especially a surgical spear, wherein the sponge product is sufficiently free of debris as to render it uniquely suited for use in LASIK surgery and like microsurgical procedures. Such a product will contain few if any particles that are visible at 20 power (or lower) magnification, and may be characterized as essentially particulate free.
As used herein, the phrase “sponge element” will generally refer to a piece of sponge cut from a “sponge member.” The phrase “sponge product” will generally refer to a sponge element that has been processed, in accordance with the invention, to render it at least substantially particle-free, and a sponge element or product combined with another component (e.g., a handle) will generally be referred to as a “sponge device.”
It has now been found that certain of the foregoing and related objects of the invention are readily attained by the provision of a method for the production of a packaged surgical sponge product, comprising the steps: providing a surgical grade sponge member; cutting the sponge member, in at least a primary cutting operation, to produce at least one sponge element defined by at least one exposed cut surface; thereafter washing the sponge element to produce a substantially particulate-free sponge element, comprising a sponge product, and packaging the sponge product in a packaging component to substantially enclose it. The method wil

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for producing surgical sponge device and product thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for producing surgical sponge device and product thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for producing surgical sponge device and product thereof will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3191669

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.