Method for producing surfactant alcohols and surfactant...

Organic compounds -- part of the class 532-570 series – Organic compounds – Oxygen containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C568S671000, C568S687000, C568S697000, C568S698000, C568S909500

Reexamination Certificate

active

06737553

ABSTRACT:

This application is a 371 of PCT/EP99/10237, filed Dec. 21, 1999.
The present invention relates to a process for the preparation of surfactant alcohols and surfactant alcohol ethers which, inter alia, are highly suitable as surfactants or for the preparation of surfactants. In the process, starting from C
4
-olefin streams, olefins or olefin mixtures are prepared by a metathesis reaction which are dimerized to give an olefin mixture having from 10 to 16 carbon atoms, which comprises less than 10% by weight of compounds which have a vinylidene group, then the olefins are derivatized to give surfactant alcohols and said alcohols are optionally alkoxylated.
The invention further relates to the use of the surfactant alcohols and surfactant alcohol ethers for the preparation of surfactant by glycosylation or polyglycosylation, sulfation or phosphation.
Fatty alcohols having chain lengths from C
8
to C
18
are used for the preparation of nonionic surfactants. They are reacted with alkylene oxides to give the corresponding fatty alcohol ethoxylates. (Chapter 23 in: Kosswig/Stache, “Die Tenside” [Surfactants], Carl Hanser Verlag, Munich Vienna (1993)). The chain length of the fatty alcohol influences the various surfactant properties, such as, for example, wetting ability, foam formation, ability to dissolve grease, cleaning power.
Fatty alcohols having chain lengths from C
8
to C
18
can also be used for preparing anionic surfactants, such as alkyl phosphates and alkyl ether phosphates. Instead of phosphates, it is also possible to prepare the corresponding sulfates. (Chapter 2.2. in: Kosswig/Stache “Die Tenside” [Surfactants], Carl Hanser Verlag, Munich Vienna (1993)).
DE-A-196 04 466 is concerned with aqueous compositions containing an alkylglycoside and a polyethyleneglycol derivative of formula I given in this document.
The alkyl group R
2
(Page 2, line 55) has 8 to 18, preferably 10 to 16 carbon atoms; no direct information is given in this document about the degree of branching. One can, however, conclude that the alkyl group must be predominantly linear, because it is said that it has been obtained by hydrogenation of native fatty acids.
Such fatty alcohols are obtainable from native sources, e.g. from fats and oils, or else in a synthetic manner by constructing building blocks having a lower number of carbon atoms. One variant here is the dimerization of an olefin to give a product having twice the number of carbon atoms and its functionalization to give an alcohol.
For the dimerization of olefins, a number of processes are known. For example, the reaction can be carried out over a heterogeneous cobalt oxide/carbon catalyst (DE-A-1 468 334), in the presence of acids such as sulfuric or phosphoric acid (FR 964 922), with an alkyl aluminum catalyst (WO 97/16398), or with a dissolved nickel complex catlyst U.S. Pat. No. 4,069,273). According to the details in U.S. Pat. No. 4,069,273, the use of these nickel complex catalysts (the complexing agent used is 1,5-cyclooctadiene or 1,1,1,5,5,5-hexafluoropentane-2,4-dione) gives highly linear olefins with a high proportion of dimerization products.
DE-A-43 39 713 (D1) is concerned with a process of oligomerization of olefins using catalysts, which have been tailored so that there are obtained extraordinary high proportions of linear reaction products, which are particularly desired with this process.
Working Examples 3 to 5 of tis document shows oligomerization of butan/butene-mixtures, whereby reactin products are obtained containing 62 to 78% by weight of Octen. This known procedure comprises no metathesis and the reaction products disclosed therein do not consist of components having 10 to 16 carbon atoms.
U.S. Pat. No. 3,448,163 (D3) is concerned with a process for diproportionation of olefins and catalysts, which are particularly useful for this process. In the Working Example there is shown that butene-1 is transformed into a mixture of olefins having 2 to 7 carbon atoms, particularly ethylene and hexene-3. this known process comprises no dimerisation step and the reaction product disclosed therein does not consist of components having 10 to 16 carbon atoms.
Functionalization of the olefins to give alcohols with construction of the carbon skeleton about a carbon atom expediently takes place via the hydroformulation reaction, which gives a mixture of aldehydes and alcohols, which can then be hydrogenated to give alcohols. Approximately 7 million metric tons of products per annum are produced worldwide using the hydroformylation of olefins. An overview of catalysts and reaction conditions for the hydroformylation process are given, for example, by Beller et al. In Journal of Molecular Catalysis, A104 (1995), 17-85 and also in Ullmann's Encyclopedia of Industrial Chemistry, vol. A5 (1986), page 217 et seq., page 333, and the relevant literature references.
GTB-A-1 471 481 (D2) is concerned with a process for hydroformylation olefins using a catalyst containing cobalt. The olefins introduced in this process are linear and, hence, oxoalcohols an oxoaldeydes are obtained having a low degree of branching.
p From WO 98/23566 it is known that sulfates, alkoxylates, alkoxysulfates and carboxylates of a mixture of branched alkonols (oxo alcohols) exhibit good surface activity in cold water and have good biodegradability. The alkonols in the mixture used have a chain length of greater than 8 carbon atoms, having on average from 0.7 to 3 branches. The alkanol mixture can, for example, be prepared by hydroformylation, from mixtures of branched olefins which for their part can be obtained either by skeletal isomerization or by dimerization of internal, linear olefins.
A given advantage of the process is that a C
3
- or C
4
-olefin stream is not used for the preparation of the dimerization feed. It follows from this that, according to the current prior art, the olefins subjected to dimerization therein must have been prepared from ethylene (e.g. SHOP process). Since ethylene is a relatively expensive starting material for surfactant manufacture, ethylene-based processes have a cost disadvantage compared with processes which start from C
3
- and/or C
4
-olefin streams.
Another disadvantage of this known process is the use of mixtures of internal olefins, which are only obtainable by isomerization of alpha-olefins, which is required for the preparation of branched surfactant oxo alcohols. Such processes always lead to isomer mixtures which, because of the varying physical and chemical data of the components, are more difficult to handle in terms of process engineering than pure substances. Furthermore, the additional process step of isomerization is required, by virtue of which the process has a further disadvantage. The dimerization of a pure internal olefin, such as 2-pentene or 3-hexene, and the further dimerization of the dimerization products have not been described previously.
The structure of the components of the oxo alkanol mixture depends on the type of olefin mixture which has been subjected to hydroformylation. Olefin mixtures which have been obtained by skeletal isomerization from alpha-olefin mixtures lead to alkanols which are branched predominantly at the ends of the main chain, i.e. in positions 2 and 3, calculated from the end of the chain in each case (page 56, last paragraph). Olefin mixtures which have been obtained by dimerization of olefins of shorter chain lengths give, by the process disclosed in this publication, oxo alcohols whose branches are more in the middle of the main chain and, as Table IV on page 68 shows, very predominantly on C4 and further removed carbon atoms, relative to the hydroxyl carbon atoms. By contrast, less than 25% of the branches are at the C2 and C3 positions, relative to the hydroxyl carbon atom (pages 28/29 of this document).
The surface-active end products are obtained from the alkanol mixtures either by oxidation of the —CH
2
OH group to give the carboxyl group, or by sulfation of the alkanols or their alkoxylates.
Similar processes for the preparation of surfactan

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for producing surfactant alcohols and surfactant... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for producing surfactant alcohols and surfactant..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for producing surfactant alcohols and surfactant... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3195919

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.