Method for producing reduced iron agglomerates

Specialized metallurgical processes – compositions for use therei – Processes – Producing or treating free metal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S030000, C266S177000, C266S281000

Reexamination Certificate

active

06254665

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method for producing reduced iron agglomerates by reduction of iron oxide agglomerates incorporated with carbonaceous material in a moving hearth reducing furnace.
2. Description of the Related Art
In a MIDREX process, which is known as a method for preparing reduced iron, a reducing gas produced by degeneration of natural gas is blown into a shaft furnace through a tuyere so that the iron ore or iron oxide pellets filled in the furnace are reduced in a reducing atmosphere. This method uses a large amount of natural gas, which is expensive, and requires degeneration of the natural gas. Thus, this method inevitably results in high production costs.
Recently, processes for producing reduced iron using inexpensive coal in place of the natural gas have attracted attention. For example, U.S. Pat. No. 3,443,931 discloses a process for producing reduced iron including pelletizing a mixture of powdered iron ore and a carbonaceous material, such as coal, and reducing iron oxide in a hot atmosphere. In this process, a given depth of iron oxide pellets incorporated with a dried carbonaceous material is fed into a rotary hearth furnace. The contents are moved and heated by radiant heat in the furnace to reduce iron oxide by the carbonaceous material. The reduced pellets are cooled by radiative cooling and are then discharged from the furnace by a discharging apparatus. This process has some advantages over the MIDREX process: use of coal as a reducing agent, direct use of powdered iron ore, and a high reducing rate.
Rolling, friction or dropping shock when the iron oxide pellets are fed into the reducing furnace, however, causes formation of powder from the pellets and the powder is fed into the furnace together with the pellets. The fed powder is deposited on the rotary hearth. Since the powder also includes the carbonaceous material, it is reduced together with the iron oxide pellets to form reduced iron powder. A fraction of the reduced iron is discharged with the reduced iron pellets from the furnace, but the residual fraction is squeezed into the rotary hearth surface by the discharging apparatus. The squeezed reduce iron powder is deposited on the rotary hearth surface without reoxidation. Reduced iron powder is further deposited during the rotation of the rotary hearth and gradually integrates with the previously reduced iron powder to form a layer of a large reduced iron plate.
According to the above U.S. patent, a mixture of iron ore, coal powder, and SiO
2
is heated at 1,300 to 1,400° C. on a base refractory to form a low-melting-point substance containing FeO and SiO
2
, and then the furnace is cooled to form a semi-melted hearth, in order to mechanically discharge the reduced iron plate by a discharging apparatus and to facilitate heat transfer from the hearth to the iron oxide pellets.
Such a construction of the hearth inevitably requires a long preparatory period prior to furnace operation. Since the temperature range in which the hearth material can be present in a semi-melted state is around 1,150° C. and is narrow, the temperature of the hearth must be controlled to be uniform. When the temperature of the moving hearth is not uniform, the temperature is low at two ends of the moving hearth, and the hearth member is present in an unsticky solid state. Thus, the bulk hearth member separates when the reduced iron agglomerates are discharged by the discharging apparatus. When the surface of the moving hearth is cooled by radiative cooling from the discharging apparatus, the internal section of the hearth is hotter and more viscous than the cooled surface. Thus, the powder included in the agglomerates is squeezed into the internal section of the moving hearth from the surface. As a result, the powder forms a large reduced iron plate which cannot be easily discharged by the discharging apparatus. Furthermore, the powder is mixed with the hearth material composed of FeO and SiO
2
to cause an increased melting point of the hearth material. Thus, the semi-melted state of the hearth and thus the smoothness of the hearth surface cannot be maintained.
A possible alternative method to this process is construction of a shaped or amorphous refractory on the base refractory. The overlying refractory, however, may be damaged by thermal shocks. Furthermore, the construction of the shaped or amorphous refractory is performed by human-wave tactic and requires a long working period.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method for producing reduced iron agglomerates in which a hearth member is easily constructed, has high durability, can maintain surface flatness, and is less altered.
A method for producing reduced iron agglomerates in accordance with the present invention includes the steps of supplying iron oxide agglomerates incorporated with carbonaceous material onto a moving hearth moving in a moving hearth furnace, reducing by heating the iron oxide agglomerates to form reduced iron agglomerates while the moving hearth moves in the moving hearth furnace, and discharging for collection the reduced iron agglomerates from the moving hearth furnace. The moving hearth is formed by sintering a hearth material primarily composed of iron oxide and constructed as a layer on a base refractory on the moving hearth. The sintered moving hearth is not melted at an operational temperature in a reducing step.
According to the present invention, the moving hearth is readily formed by sintering the hearth member constructed as a layer in the moving hearth furnace. This process is simpler than providing a shaped or amorphous refractory on the base refractory.
Since the hearth member is in a sintered solid state and is not melted at the operational temperature in the reducing step, the moving hearth has high durability and is usable repeatedly. Furthermore, the powder included in the agglomerates does not form a large reduced iron plate inhibiting discharge of the reduced iron agglomerates. The surface flatness of the moving hearth is easily maintained.
Since a hearth material primarily composed of iron oxide is used as a moving hearth, the hearth member and the main component to be reduced are composed of the same material. Thus, the alteration of the hearth member due to mixing of the powder from the iron oxide agglomerates does not occur. Since the hearth material is reduced in the reducing step, the metallic content in the reduced iron agglomerates as a product is not decreased even if the hearth member is separated from the moving hearth and is discharged from the moving hearth furnace.
Preferably, an intermediate layer comprising magnesium oxide is disposed between the base refractory and the hearth member.
Even if the hearth member is melted during the operation of the reducing step, the magnesium oxide intermediate layer avoids contact of the melted hearth member with the base refractory. Thus, shutdown due to damage of the hearth member will not occur.
Preferably, the hearth member is constructed by placing agglomerates of the hearth material onto the base refractory of the moving hearth and leveling the agglomerates of the hearth material into a layer.
In such a process, the construction of the hearth member can be easily and rapidly performed. Since general devices used in production of reduced iron agglomerates, such as a hopper for feeding iron oxide pellets, can be used in the construction of the hearth member, facility costs can be reduced. A leveler or a discharging apparatus used in production of general reduced iron agglomerates can be used in this leveling step.
Preferably, the hearth material comprises iron ore powder containing 1 to 8.5 percent by weight of water.
In this case, the hearth member is effectively constructed. A water content less than 1 percent by weight or more than 8.5 percent by weight causes excessively high dropping strength. Thus, the leveler or the like will not level the hearth material. In addition, the leveler will not break the a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for producing reduced iron agglomerates does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for producing reduced iron agglomerates, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for producing reduced iron agglomerates will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2494244

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.