Method for producing metallic nanoparticles

Specialized metallurgical processes – compositions for use therei – Processes – Spheroidizing or rounding of existing solid metal particles

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C075S346000, C075S010190, C075S010220

Reexamination Certificate

active

06689192

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to metallic nanoparticles and, more particularly, to a plasma-based method of producing uniform, spherical, metallic nanoparticles.
BACKGROUND OF THE INVENTION
Metallic nanoparticles, and in particular uniform, spherical, metallic nanoparticles having a diameter of about 1-100 nanometers (nm) (see, for example, C. G. Grandqvist and R. A. Buhrman in “Ultrafine Metal Particles”, J. Appl. Phys. Vol. 47, no. 5, pp. 2200-2219, 1976) are important materials for applications that include semiconductor technology, magnetic storage, electronics fabrication, and catalysis. Metallic nanoparticles have been produced by gas evaporation (see K. Kimoto et al. in J. Appl. Phys. Vol. 2, p. 702, 1963; and W. Gong et al., J. Appl. Phys., vol. 69, no. 8, pp. 5119-5121); by evaporation in a flowing gas stream (see S. Iwama et al., Nanostructured Materials, vol 1, pp 113-118, 1992; and S. Panda et al., Nanostructured Materials, vol. 5, nos. 7/8, pp. 755-767, 1995); by mechanical attrition (see H. J. Fecht et al., Nanostructured Materials, vol. 1, pp. 125-130, 1992); by sputtering (see V. Haas et al., Nanostructured Materials, vol. 1, pp. 491-504, 1002); by electron beam 25 evaporation (see J. A. Eastman et al., Nanostructured Materials, vol. 2, pp. 377-382, 1993); by electron beam induced atomization of binary metal azides (see P. J. Herley et al., Nanostructured Materials, vol. 2, pp. 553-562, 1993); by expansion of metal vapor in a supersonic free jet (see K. Recknagle et al., Nanostructured Materials, vol. 4, pp. 103-111, 1994); by inverse micelle techniques (see J. P. Chen et al., Physical Review B, vol. 51, no. 17, pp. 527-532); by laser ablation (see T. Yamamoto et al., Nanostructured Materials, vol. 7, no. 3, pp. 305-312, 1996); by laser-induced breakdown of organometallic compounds (see T. Majima et al., Jpn. J. Appl. Phys., vol. 33, pp. 4759-4763, 1994); by pyrolysis of organometallic compounds (see Y. Sawada et al., Jpn. J. Appl. Phys., vol 31, pp. 3858, 1992); by microwave plasma decomposition of. organometallic compounds (see C. Chou et. al, J. Mat. Res., vol. 7, no. 8, pp. 2107-2113, 1992; and J. R. Brenner et al., Nanostructured Materials, vol. 8, no. 1, pp. 1-17, 1997, and by other methods.
Preferred methods provide a pure metallic nanoparticle product, and are to continuous, i.e. production is not halted to replenish the supply of reactants after depletion. Preferred methods, also, are cost effective, employ relatively inexpensive precursor materials, and are scalable from a laboratory scale to an industrial scale. At least some of these criteria for a preferred method pertain to some of the above methods. However, none of the above methods has been scaled up from a laboratory scale to a larger, industrial scale. Thus, cost-effective, continuous methods for producing uniform, high purity, metallic nanoparticles on a large scale remain desirable.
Therefore, an object of the present invention is to provide a method for producing uniform, high purity, metallic nanoparticles.
Another object of the present invention is to provide a continuous method for producing metallic nanoparticles.
Another object of the present invention is to provide an energy-efficient method for producing metallic nanoparticles.
Another object of the present invention is to provide a cost-effective method for producing metallic nanoparticles from inexpensive precursor materials.
Additional objects, advantages and novel features of the invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
SUMMARY OF THE INVENTION
In accordance with the purposes of the present invention, as embodied and broadly described herein, the present invention includes a method for producing metal nanoparticles. The method includes generating an aerosol having solid metal microparticles and generating a non-oxidizing plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor. The aerosol is directed into the plasma hot zone so that the microparticles vaporize, and the metal vapor is directed away from the plasma and allowed to cool, condense, and form solid metal nanoparticles.
The invention also includes metallic nanoparticles that are made by generating an aerosol having microparticles and generating a non-oxidizing plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor. The aerosol is directed into the plasma hot zone so that the microparticles vaporize, and the metal vapor is directed away from the plasma and allowed to cool, condense, and form solid metal nanoparticles.


REFERENCES:
patent: 3848068 (1974-11-01), Rice
patent: 4383852 (1983-05-01), Yoshizawa
patent: 4808217 (1989-02-01), Kopatz et al.
patent: 5364562 (1994-11-01), Wang
patent: 5514350 (1996-05-01), Kear et al.
patent: 5585020 (1996-12-01), Becker
patent: 5665277 (1997-09-01), Johnson et al.
patent: 5783263 (1998-07-01), Majetich et al.
patent: 5876683 (1999-03-01), Glumac et al.
patent: 5958329 (1999-09-01), Brown
patent: 5972065 (1999-10-01), Dunn et al.
patent: 5984996 (1999-11-01), Gonsalves et al.
patent: 5989648 (1999-11-01), Phillips
patent: 6165247 (2000-12-01), Kodas et al.
patent: 6254940 (2001-07-01), Pratsinis
C. Hao et al., “Plasma Production of Metallic Nanoparticles,” J. Mater. Res., 1992, vol. 7, No. 8, pp. 2107-2113.
C. G. Graqvist et al., “Ultrafine Metal Particles,” J. Applied Physics, May 1976, vol. 47, 1976, No. 5, pp. 2200-2219.
S. Panda et al., “Modeling the Synthesis of Aluminum Particles by Evaporation-Condensation in an Aersol Flow Reactor,” Nanostructed Mater., 1995, vol. 5, No. 7/8, pp. 755-767.
D. Vollath et al., “Synthesis of Nanosized Ceramic Nitride Powders by Microwave Supported Plasma Reactions,” Nanostructed Mater., 1993, vol. 2, pp. 451-456.
D. Vollath et al., “Synthesis of Nanosized Ceramic Oxide Powders by Microwave Plasma Reactions,” Nanostructed Mater., 1992, vol. 1, pp. 427-437.
J. R. Brenner et al., “Microwave Plasma Synthesis of Carbon-Supported Ultrafine Metal Particles,” Nanostructed Mater., 1997, vol. 8, No. 1, pp. 1-17.
S. Iwama et al., “Vaporization and Condensation of Metals in a Flowing Gas With High Velocity,” Nanostructed Mater., 1992, vol. 1, pp. 113-118.
H. J. Fecht, “Synthesis and Properties of Nanocrystalline Metals and Alloys Prepared by Mechanical Attrition,” Nanostructed Mater., 1992, vol. 1, pp. 125-130.
V. Haas et al., “The Morphology and Size of Nanostructed Cu, Pd, and W Generated by Sputtering,” Nanostructed Mater., 1992, vol. 1, pp. 491-504.
P. J. Herley et al., “Nanoparticle Generation by Electron Beam Induced Atomization of Binary Metal Azides,” Nanostructed Mater., 1993, vol. 2, pp. 553-562.
K. Recknagle et al., “Properties of Nanocrystalline Zinc Produced by Gas Condensation,” Nanostructed Mater., 1994, vol. 4, No. 1, pp. 103-111.
T. Yamamoto et al., “Synthesis of Nanocrystalline NbAl3by Laser Ablation Technique,” Nanostructed Mater., 1996, vol. 7, No. 3, pp. 305-312.
G. Yang et al., “Characterization and Sinterability of Nanophase Titania Particles Processed in Flame Reactors,” Nanostructured Mater., 1996, vol. 7, No. 6, pp. 675-689.
J. A. Eastman et al., Synthesis of Nanophase Materials by Electron Beam Evaporation, Nanostructured Mater., 1993, vol. 2, pp. 377-382.
J. P. Chen et al., “Enhanced Magnetization of Nanoscale Colloidal Particles,” Phys. Rev. B, May 1995, vol. 51, No. 17, pp. 11527-11532.
W. Gong et al., “Ultrafine Particles of Fe, Co, and Ni Ferromagnetic Metals,” J. Appl. Phys., Apr. 1991, vol. 69, No. 8, pp. 5119-5121.
T. Majima et al., “Preparation of Iron Ultrafine Particles by the Dielectric Breakdown of Fe(CO)5Using a Transversely Excited Atmospheric CO2Laser and Their Characteristics,”

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for producing metallic nanoparticles does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for producing metallic nanoparticles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for producing metallic nanoparticles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3294059

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.