Method for producing metallic microparticles

Specialized metallurgical processes – compositions for use therei – Processes – Producing or purifying free metal powder or producing or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C075S367000

Reexamination Certificate

active

06755886

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to metallic particles and more particularly, to a plasma-based method of producing a narrow distribution of spherical, metallic microparticles from smaller metallic nanoparticles.
BACKGROUND OF THE INVENTION
The standard technology for producing aluminum particles in the 1-10 micron size diameter range, which may be optimal for metallic paints, involves converting larger metallic particles into smaller ones by wet the ball milling of the larger particles. Wet ball milling is an inefficient method of providing particles in this size range because only about 20% of the particles produced by wet ball milling are less than 10 microns and this minor fraction must be physically separated from the rest of the wet-ball milled product. A more efficient method for producing metallic particles in the optimal size range remains desirable.
Therefore, an object of the present invention is to provide an efficient method for producing high purity metallic particles of an optimal size range.
Additional objects, advantages and novel features of the invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
SUMMARY OF THE INVENTION
In accordance with the purposes of the present invention, as embodied and broadly described herein, the present invention includes method for producing metallic particles from smaller metallic nanoparticles. The method includes generating an aerosol of precursor solid metallic nanoparticles, generating a non-oxidizing plasma having a hot zone with a temperature sufficiently high to melt the precursor nanoparticles and directing the aerosol into the hot zone. In the hot zone, the precursor nanoparticles melt, collide, join, spheroidize and become larger molten, spherical metallic particles. The larger, molten, spherical metallic particles are directed away from the hot zone so that they cool and solidify to form solid, spherical, metallic particles that are larger than the precursor nanoparticles.


REFERENCES:
patent: 3655838 (1972-04-01), Reed et al.
patent: 4246208 (1981-01-01), Dundas
patent: 4627943 (1986-12-01), Seidler
patent: 4731110 (1988-03-01), Kopatz et al.
patent: 4731111 (1988-03-01), Kopatz et al.
patent: 4778517 (1988-10-01), Kopatz et al.
patent: 4892579 (1990-01-01), Hazelton
patent: 5114471 (1992-05-01), Johnson et al.
patent: 5460701 (1995-10-01), Parker et al.
patent: 5514350 (1996-05-01), Kear et al.
patent: 5770126 (1998-06-01), Singh et al.
patent: 5989648 (1999-11-01), Phillips
patent: 6159267 (2000-12-01), Hampden-Smith et al.
patent: 6171704 (2001-01-01), Mosser et al.
patent: 6261484 (2001-07-01), Phillips et al.
patent: 6277774 (2001-08-01), Xiao et al.
patent: 2002/0037320 (2002-03-01), Denes et al.
Mark J. Hampden-Smith et al., “Palladium-Containing Particles Method and Apparatus of Manufacture, Palladium-Containing Devised Made Therefrom,” U.S. Patent 6,159,267 issued Dec. 12, 2000.
C.G. Granqvist and R.A. Buhram, “Ultrafine Metal Particles,” Journal of Applied Physics, vol. 47, No. 5, pp. 2200-2219, May 1976.
T. Uchikoshi, Y. Sakka, M. Yoshitake, and K. Yoshibara,“ A Study of the Passivating Oxide Layer on Fine Nickel Particles,” NanoStructured Materials, vol. 4, No. 2, pp. 199-206, 1994.
H. Gleiter, “Materials with Ultrafine Microstructures: Retrospectives and Perspectives,” NanoStructured Materials, vol. 1, pp. 1-19, 1992.
W. Lee Perry, D. Wayne Cooke, and Joel D. Katz, Abhaya K. Datye, “One the Possibility of a Significant Temperature Gradient in Supported Metal Catalysts Subjected to Microwave Heating,” Catalysis Letters, vol. 47, pp. 1-4, 1997.
S. Panda and S.E. Pratsinis, “Modeling the Synthesis of Aluminum Particles by Evaporation-Condensation in an Aerosol Flow Reactor,” NanoStructured Materials, vol. 5, Nos. 7/8, pp. 755-767, 1995.
C. H. Chow et al., “Platinum Metal Etching in a Microwave Oxygen Plasma,” j. Appl. Phys. vol. 68, No. 5, pp. 2415-2423, 1990.
T. Uchikoshi, Y. Sakka, M. Yoshitake, and K. Yoshihara, “A Study of the Passivating Oxide Layer on Fine Nickel Particles,” NanoStructured Materials, vol. 4, No. 2, pp. 199-206, 1994.
K. Recknagle, Q. Xia, J.N. Chung, C.T. Crowe, H. Hamilton, “Properties of Nanocrystalline Zinc Produced by Gas Condensation,.” NanoStructured Materials, vol. 4, No. 1, pp. 103-111, 1994.
P.J. Herley and W. Jones, “Nanoparticle Generation by Electron Beam Induced Atomization of Binary Metal Azides,” NanoStructured Materials, vol. 2, pp. 553-562, 1993.
D. Vollath, K.E. Sickafus,“ Synthesis of Nanosized Ceramic Nitride Powders by Microwave Supported Plasma Reactions,” NanoStructured Materials, vol. 2, pp. 451-456, 1993.
J.A. Eastman, L.J. Thompson, and D.J. Marshall, “Synthesis of Nanophase Materials by Electron Beam Evaporation,” NanoStructured Materials, vol. 2, pp. 377-382, 1993.
V. Hass and R. Birringer, “The Morphology and Size of Nanostructured Cu, Pd, and W Generated by Sputtering,” NanoStructured Materials, vol. 1, pp. 491-504, 1992.
Dieter Vollath and Kurt E. Sickafus, “Synthesis of Nanosized Ceramic Oxide Powders by Microwave Plasma Reactions,” NanoStructured Materials, vol. 1, pp. 427-437, 1992.
H.J. Fecht, “Synthesis and Properties of Nanocrystalline Metals and Alloys Prepared by Mechanical Attrition, ”NanoStructured Materials, vol. 1, pp. 125-130, 1992.
S. Iwama and K. Hayakawa, “Vaporization and Condensation of Metals in a Flowing Gas with High Velocity,” vol. 1, pp. 113-118, 1992.
G. Skandan, Y-J. Chen, N. Glumac, and B.H. Kear, “Synthesis of Oxide Nanoparticles in Low Pressure Flames, ”NanoStructured Materials, vol. 11, No. 2, pp. 149-158, 1999.
J.R. Brenner, J.B.L. Harkness, M.B. Knickelbein, G.K. Krumdick, and C.L. Marshall, “Microwave Plasma Synthesis of Carbon-Supported Ultrafine Matal Particles,” NanoStructured Materials, vol. 8, No. 1, pp. 1-17, 1997.
Guixiang Yang, Haoren Zhuang, and Pratim Biswas, “Characterization and Sinterability of nanophase Titania Particles Processed in Flame Reactors,” NanoStructured Materials, vol. 7, No. 6, pp. 675-689, 1996.
T. Yamamoto and J. Mazumder, Synthesis of Nanocrystalline NbA13by Lazer Ablation Technique, vol. 7, No. 3, pp. 305-312, 1996.
ChinHao Chou and Jonathan Phillips, “Plasma Production of Metallic Nanoparticles,” J. Mater. Res., vol. 7, No. 8, pp. 2107-2113, 1992.
J.P. Chen, C.M. Sorensen, and K.J. Klabunde, “Enhanced Magnetization of Nanoscale Colloidal Cobalt Particles, ”The American Physical Society, vol. 51, No. 17, pp. 527-532, May 1995.
Wei Gong, Hua Li, Zhongren Zhao, and Jinchang Chen, “Ultrafine Particles of Fe, Co, and Ni Ferromagnetic Metals, ”J. Appl. Phys, Vol, 69, No. 8, pp. 5119-5121, Apr. 1991.
Tetsuro Majima, Tesshu Miyahara, Koichi Haneda, Tadahiro Ishii, and Michio Takami, “Preparation of Iron Ultrafine Particles by the Dielectric Breakdown of Fe (CO)5 Using a Transversely Excited Atmospheric Co2 Laser and Their Characteristics, ”J. Appl. Phys., vol. 33, part 1, No. 8, pp. 4759-4763, Aug. 1994.
A. Chatterjee and D. Chakravorty, “Preparation of Nickel Nanoparticles by Metalorganic Route, ” Appl. Phys. Lett., vol. 60 , No. 1, pp. 138-140, Jan. 1992.
Yoshiaki Sawada, Yoshiteru Kageyama, Massashi Iwata, and Akira Tasaki, “Synthesis and Magnetic Properties of Ultrafine Iron Particles Prepared by Pyrolysis of Carbonyl Iron, ” Jpn. J. Appl. Phys., vol. 31, part 1, No. 12A, pp. 3858-3861, Dec. 1992.
H. Shim and J. Phillips, “Resstructuring of Alimina Particles Using a Plasma Torch, ” J. Mater. Res., vol. 14, No. 3, pp. 849-854, Mar. 1999.
Chun-Ku Chen, Seth Gleiman, and Jonathan Phillips, “Low-Power Plasma Torch Method for tghe Production of Crystalline Sperical Ceramic Particles,” J. Mater. Res., vol. 16, No 5, pp. 1256-1265, May 2001.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for producing metallic microparticles does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for producing metallic microparticles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for producing metallic microparticles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3339465

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.