Method for producing magnesium

Specialized metallurgical processes – compositions for use therei – Processes – Producing or treating free metal

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

420411, C22B 2622

Patent

active

056139993

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to a refined magnesium material such as an ingot or billet used for parts of transport and home electric apparatus as well as kinds of cases and a process for producing the refined magnesium material.
2. Description of the Prior Art
Aluminum alloy is widely used for a case such as an oil pan and a transmission case in a vehicle. Much attention has been paid to a magnesium alloy, because the parts can be made lighter from the magnesium alloy than an aluminum alloy. Further, a magnesium composite material having reinforcing agents added therein has been investigated. The present invention relates to magnesium, various magnesium alloy and magnesium composite, all of which hereinafter are referred to as "magnesium material".
In general, the magnesium material in a molten state is highly flammable when it comes to be in contact with air, and thereby, the molten magnesium material is more difficult to handle than the molten aluminum material.
(1) The die casting or the squeeze casting of magnesium material must be carried out under a condition wherein the molten magnesium material to be cast is separated from air by inflammable gas SF.sub.6 or a mixture of SF.sub.6 and CO.sub.2. On the other hand, the gravity casting must be carried out under a condition wherein the molten material to be cast is overspread by a flame resistant flux mainly containing sulfur. However, there are the following problems. The overspread gas, SF.sub.6 is expensive and results in a high manufacturing cost. The gravity casting generates SO.sub.2 gas due to the sulfur powder and results in a poor working environment.
(2) In a case of refining a returned magnesium material or scrap, there are the following problems. In order to prevent the molten magnesium material from catching fire, the refining process must be carried out by using a flux agent, which makes the manufacturing cost expensive and causes the resultant magnesium material to be inferior in corrosion resistance.
(3) The casting process of the magnesium material is not carried out in the way exactly the same as that of aluminum costing process in view of the facility and the working steps. When a die casting of a hot chamber type is applied to the magnesium material, a specified die casting machine is required. When the die casting of a cold chamber type is applied thereto, watching for the prevention of fire is required. This prevents the automatic casting of magnesium material. Further, it is difficult to apply a lost wax process to the casting of magnesium material.
These disadvantageous points result from the intrinsic property of magnesium material such as an easy flammability of the molten magnesium material, resulting in difficulty in ensuring safe operation and high-cost.
In order to solve the problem, one of inventors, Tadayoshi Nakamura has proposed a method for providing the molten magnesium material with a flame-resistant property by adding an alkaline earth metal or metals such as calcium to the molten magnesium material and further a method for recovering the original corrosion resistance of the magnesium material, which is degraded due to addition of alkaline earth metal, by adding a corrosion resistant metal such as zinc (Japanese Patent Application No. 54394/1992).
However, even if the magnesium material is provided with alkaline earth metal, it does not show sufficiently the flame resistant property, resulting in generation of some ignition point. Although the ignition point may self-extinguish, the ignition point may extend and develop to fire, so that the extinguishing agent SF.sub.6 must be used to put the fire out. On the other hand, when the molten magnesium material to which alkaline earth metals as a flame resistant agent are added is cooled and solidified into an ingot, the resultant ingot is always provided with porosity (which means hereinafter that a number of concave like points of less than 2 mm appeared on a cross-section of the cast body). It is a big problem bec

REFERENCES:
patent: 1914588 (1933-06-01), Wood
patent: 3417166 (1968-12-01), Foster
patent: 4605438 (1986-08-01), Keith et al.
patent: 5223215 (1993-06-01), Charbonnier et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for producing magnesium does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for producing magnesium, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for producing magnesium will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2200028

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.