Refrigeration – Intermediate fluid container transferring heat to heat... – Non-liquid heat accumulator
Reexamination Certificate
2002-04-22
2003-11-04
Doerrler, William C. (Department: 3749)
Refrigeration
Intermediate fluid container transferring heat to heat...
Non-liquid heat accumulator
C062S046100, C062S046200, C062S480000, C062S048100, C062S062000, C062S078000
Reexamination Certificate
active
06640580
ABSTRACT:
The invention relates to a method for the provision of remote heat energy according to the features of claim
1
and to a latent-heat storage unit as claimed in claim
8
and also to a transport unit as claimed in claim
11
.
Systems for the supply of remote heat are known, in which consumers are supplied with heat energy via a pipeline system, for example, for the supply of hot water or for treatment. In this case, as a rule, the heat transfer medium is used is water. The water heated via a heat exchanger transports the heat occurring in a thermal power station, for example in a block-heating power station, or excess industrial process heat to the consumer unit via the pipeline system. In principle, the use of remote heat serves for heat recovery, that is to say it constitutes a measure for the multiple utilization of the enthalpy of a building or a process and thus serves for the effective utilization of the primary energy used.
In the remote transmission of heat, particularly in the case of heat recovery, the problem of heat transport always arises in connection with the profitability of such systems. Pipeline systems used hitherto are suitable only for transport distances of about 40 kilometers for hot water or steam, since the outlay for the necessary insulating measures would then become too high or would rise according to the heat losses. The object on which the invention is based is, therefore, to provide remote heat energy in such a way that the above disadvantages are avoided and both an effective profitable and effective energy-related utilization of remote heat becomes possible.
This object is achieved in an extremely surprising way by means of the features of claims
1
,
8
and
11
.
By a method being provided, in which directly generated and/or indirectly formed and storable heat energy is stored in a mobile container-like latent-heat storage unit capable of being warehoused and being delivered, the latent-heat storage unit being transported by means of a transport unit to at least one heat-energy reception unit and being arranged there in suitable form on or in the heat-energy reception unit, there is, for the first time, the possibility of delivering heat energy over relatively long distances flexibly and on demand, but also in extremely profitable way.
Furthermore, according to the invention, a latent-heat storage unit and a transport unit are claimed, the latent-heat storage unit being designed in the manner of a transport container and at the same time having both standing and transport functionality. Standing and transport functionality means, in this connection, that the latent-heat storage unit according to the invention can be used both transportably and in a stationary situation, that is to say in the standing storage mode or charging mode.
The latent-heat storage unit and the transport unit according to the invention serve preferably for carrying out the method referred to above. By their use, it is possible, for the first time, to supply potential consumers with heat energy not merely to a regional extent. Consequently, with the latent-heat storage unit according to the invention and the transport unit according to the invention and, above all, by the implementation of the method according to the invention, it is possible, for the first time, to break into the monopoly of local heat energy suppliers and create a genuine market for heat energy.
The subclaims relate to developments of the invention.
It proved in an extremely advantageous way, in the invention, to be a particularly positive factor when a latent-heat store of a particular type is used for the storage of heat energy, to be precise a dynamic inorganic latent-heat store. Such latent-heat stores are known in various embodiments. They are designated as dynamic, since the storage medium exhibits essentially no anhydrite formation either as a result of rotation or due to the supply of a heat transfer substance immiscible with the storage medium.
Latent-heat storage units have been used hitherto for the stationary storage of heat energy from solar installations and for the recovery of process heat. With regard to stationary use, the disadvantage of latent-heat stores is that, realistically, they can be designed at most as monthly stores or else as weekly stores. It is therefore necessary for such a store to be charged continuously, for example when it is to be used, in particular, for the all-year supply of heat to a house. On the other hand, the latent-heat store offers substantially larger storage capacity, particularly as compared with sensible stores, for example heated water or a heated solid, so that an inorganic latent-heat store replaces an up to six times larger water store. The method according to the invention, on the one hand, makes use of the advantage of the comparatively high storage capacity and overcomes the disadvantage of the latent-heat store, namely that its storage capacity is still not sufficient for a yearly store or longer. Thus, within the scope of the method according to the invention, a permanent and flexible supply of heat energy, even over relatively long distances, becomes possible.
For this purpose, what are known as autonomous latent-heat storage units are used in an extremely advantageous way. In a particularly advantageous development of the invention, the latent-heat storage unit according to the invention possesses mobility properties which are equivalent to those of a transportable container or silo. To be precise, the inventor succeeded, for the first time, in demonstrating that, if storage media with at least the storage capacities to be found in latent-heat stores are used, heat energy can be delivered in an extremely advantageous way via existing transport means and transport routes with considerable energy-saving effects both as regards the energy balance and with regard to economic efficiency.
In a further advantageous development of the method according to the invention and of the latent-heat storage unit according to the invention, there is advantageously provision, furthermore, for metal hydrates, preferably sodium acetate and/or industrial white oil to be used as storage medium. To be precise, it is known from the relevant literature that, in particular, the salt hydrate sodium acetate, has particularly high transformation enthalpy and also, at a transformation temperature of about 58° C., operates preferably in the temperature range which is highly suitable for heat recovery. This also applies in a comparable way, for example, to the storage medium barium hydroxide, barium hydroxide possessing even higher transformation enthalpy, as compared with sodium acetate, and therefore being suitable for even more efficient storage of heat.
Contrary to hereto existing forms of the supply of remote heat energy, in the method according to the invention it is possible in a simple way to receive heat energy from various heat energy sources and to transport it to where it is used. Even the energy reserves of decentral heat energy generators can be utilized effectively in this way. Moreover, the hitherto cost-increasing monopoly of local heat energy suppliers is brought to an end. Consequently, for the first time, the method provided according to the invention, in an extremely surprisingly simple way, presents the possibility of utilizing, or making available to the consumer for utilization, directly generated heat energy or indirectly emitted waste heat in a form comparable, for example, to that of electrical current. The pipeline-free transport of heat energy according to the invention can thus make a permanent contribution to the efficient utilization of primary energy.
In this connection, it is also true, in particular, that, according to the method, the latent-heat storage unit can be transported in the charged state to various supply units, in order to discharge the stored heat energy to the storage units set up there. However, according to the invention, in a further possible form of energy transfer, the latent-heat storage unit is also connected as a modu
LandOfFree
Method for producing long distance energy and devices therefor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for producing long distance energy and devices therefor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for producing long distance energy and devices therefor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3169209