Method for producing hydrogen

Chemistry of inorganic compounds – Hydrogen or compound thereof – Elemental hydrogen

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C423S627000

Reexamination Certificate

active

06638493

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to the production of hydrogen gas from the reaction of aluminum with water in the presence of sodium hydroxide as catalyst.
BACKGROUND OF THE INVENTION
Hydrogen energy is environment-friendly. Because of the actual human ecology concerns, the exploitation of hydrogen as an universal fuel would be greatly acclaimed. During the last two decades or so, the elaboration of a hydrogen-based economy has made important progress on account of numerous research projects such as the hydrogen fuel cell and the hydrogen car. Although these important discoveries constitute milestones toward a pollution-free society, more research is needed to obtain the hydrogen easily and economically.
A convenient source of hydrogen is a reaction of aluminum with water to split the water molecules into hydrogen and oxygen. The hydrogen is released as a gas and the oxygen combines with the aluminum to form aluminum oxide compounds. Aluminum is the third most abundant element after oxygen and silicon in the earth's crust, and constitutes approximately 8% by weight of the earth's crust. Aluminum is a safe material and is commonly used in the food, cosmetics and medical fields. Water is also abundant. Therefore, the reaction of these two elements to produce hydrogen represents an interesting proposal to replace fossil fuels.
Generally speaking, it is known that under certain conditions, aluminum reacts with water to generate hydrogen and heat. It is also known, however, that this type of reaction is not sustainable at ambient temperature. It is believed that a protective oxide layer forms on a metal surface in contact with water at ambient temperature and hinders the reaction. Therefore, it has been accepted by those skilled in the art that the use of aluminum in a reaction with water to generate hydrogen gas requires that the protective oxide layer is efficiently and continuously removed, and that the reaction is kept at an elevated temperature.
A number of hydrogen generators have been developed in the past. The following patent documents constitute a good inventory of the devices and methods of the prior art in the field of hydrogen gas generation using the reaction of aluminum or alloys of aluminum with water.
U.S. Pat. No. 909,536 issued on Jan. 12, 1909, and U.S. Pat. No. 934,036 issued on Sep. 14, 1909, both issued to G. F. Brindley et al. These documents disclose several compositions for generating hydrogen. The compositions comprise any metal which can form an hydroxide when it is brought into contact with a solution of a suitable hydroxide. For example, aluminum is reacted with sodium hydroxide to release hydrogen and to produce sodium aluminate.
U.S. Pat. No. 2,721,789, issued on Oct. 25, 1955 to Q. C. Gill. This document discloses the structure of an hydrogen generator for reacting water with a measured dry charge of aluminum particles and flakes of sodium hydroxide. The reaction releases hydrogen gas and produces sodium aluminate.
U.S. Pat. No. 3,554,707 issued on Jan. 12, 1971 to W. A. Holmes et al. This document discloses a gas generator having bellows to raise or lower the level of water in response to the pressure inside the generator. As the level of water drops, the contact surface between the fuel cartridge and the water is lost and the reaction is terminated.
U.S. Pat. No. 3,957,483 issued on May 18, 1976 to M. Suzuki. This patent discloses a magnesium composition which produces hydrogen upon contact with water. The preferred magnesium composition comprises magnesium, and one or more metals selected from the group consisting of iron, zinc, chromium, aluminum and manganese.
U.S. Pat. No. 3,975,913 issued on Aug. 24, 1976 to D. C. Erickson. This document discloses a hydrogen generator wherein molten aluminum is reacted with water. The generator is kept at a very high temperature to keep the metal in a molten condition.
U.S. Pat. No. 4,643,166 issued on Feb. 17, 1987, and
U.S. Pat. No. 4,730,601 issued on Mar. 15, 1988 both to H. D. Hubele et al. These documents disclose the structure of a fuel cell for producing heat energy and hydrogen gas. The device has a reaction chamber containing a fuel composition that is reactive with water. The fuel composition includes a main fuel part of magnesium and aluminum in a molar ratio of 1:2, and the second part is composed of lithium hydride, magnesium and aluminum in equal molar ratio.
U.S. Pat. No. 4,670,018 issued on Jun. 2, 1987, and
U.S. Pat. No. 4,769,044 issued on Sep. 6, 1988, both to J. H. Cornwell. These documents describe a log made of compressed wood waste and paper. The log is coated with aluminum particles. Upon burning, the aluminum particles react with moisture in the log to emit heat due to the generation of hydrogen gas.
U.S. Pat. No. 4,752,463 issued on Jun. 21, 1988 to K. Nagira et al. This document discloses an alloy which reacts with water for producing hydrogen gas. The alloy material comprises essentially aluminum and 5 to 50% tin.
U.S. Pat. No. 5,143,047 issued on Sep. 1, 1992 to W. W. Lee. This document discloses an apparatus and a method for generating steam and hydrogen gas. In this apparatus, an aluminum or aluminum alloy powder is reacted with water to generate hydrogen gas. An electric power source is used to start the reaction. The electric power source is used to explode an aluminum conductor and to disperse pieces of molten aluminum into a mixture of water and aluminum powder. A heat exchanger is provided to extract useful heat.
U.S. Pat. No. 5,867,978 issued on Feb. 9, 1999 to M. Klanchar et al. This document discloses another hydrogen gas generator using a charge of fuel selected from the group consisting of lithium, alloys of lithium and aluminum. The charge of fuel is molten and mixed with water to generate hydrogen gas.
JP 401,208,30 issued to Mito on Aug. 22, 1989. This document discloses a process for producing hydrogen. Aluminum is reacted with water under an inactive gas or a vacuum to produce hydrogen gas.
CA 2,225,978 published on Jun. 29, 1999 by J. H. Checketts. This patent application discloses a hydrogen generation system wherein a coating on reactive pellets is selectively removed to expose the reactive material to water for producing hydrogen gas on demand. In one embodiment, aluminum and sodium hydroxide are reacted with water to release hydrogen gas and produce sodium aluminate.
DE 3,401,194 published in Jul. 18, 1985 by Werner Schweikert. This document discloses a device for utilizing energy from a chemical reaction between various aluminum alloys and sodium hydroxide. The chemical reaction occurring in this device generates heat, hydrogen gas, a direct current and sodium aluminate as a residue.
FR 2,465,683 published in Mar. 27, 1981 by Guy Ecolasse. This document also discloses a process for producing hydrogen by the reaction of aluminum on sodium hydroxide solution in water. A by-product of this reaction is sodium aluminate.
Belitskus, David. 1970. Technical Note: “Reaction of Aluminum With Sodium Hydroxide Solution as a Source of Hydrogen” J. Electrochem Soc. (1970), (August), Vol. 117. No. 8, pp.1097-9, XP-002180270. This technical paper.describes several experiments wherein aluminum samples including a cylindrical block, uncompacted powders and pellets of various densities have been reacted with aqueous solutions of sodium hydroxide at various concentrations to generate hydrogen gas. In these experiments, the formation of sodium aluminate was observed, as well as the regeneration of sodium hydroxide through the precipitation of aluminum hydroxide.
Stockburger, D. et al. 1991. “On-Line Hydrogen Generation from Aluminum in an Alkaline Solution”. Proc.-Electrochem. Soc. (1992), Vol. 92-5 (Proc. Symp. Hydrogen Storage Mater., Batteries, Electrochem., pp. 431-44, 1992, XP-001032928. This technical paper describes three sizes of hydrogen generators in which aluminum is reacted with an aqueous solution of 5.75 M sodium hydroxide. This technical paper also notes the formation of sodium aluminate and the precipitation of aluminum hydroxide that re

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for producing hydrogen does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for producing hydrogen, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for producing hydrogen will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3162516

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.