Method for producing hair dye products

Bleaching and dyeing; fluid treatment and chemical modification – Dyeing involving animal-derived natural fiber material ,... – Hair dyeing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C008S405000, C008S406000, C008S435000, C008S580000, C008S606000, C008S901000, C008S907000, C424S062000, C424S070600, C424S070280

Reexamination Certificate

active

06616706

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to a process for the production of hair colorants in which a PIT or microemulsion is initially prepared and the dyes are stirred cold into the resulting PIT or microemulsion.
Emulsion-based hair colorants are very largely produced by hot processes, i.e. temperatures above 60° C. and preferably above 80° C. have to be used for the production of stable products. Thereafter, the emulsions are slowly cooled which leads to very considerable reactor possession times. It will readily be appreciated that any process which would enable the colorants to be produced as it were in the cold would have significant economic advantages.
Accordingly, the problem addressed by the present invention was to provide such a process.
DESCRIPTION OF THE INVENTION
The present invention relates to a process for the production of hair colorants in which an aqueous preparation in the form of a PIT emulsion or microemulsion is initially prepared using oil components and emulsifiers selected from the group consisting of alkyl and/or alkenyl oligoglycosides, anionic surfactants, esterquats, polyolpoly-12-hydroxystearates, fatty alcohols and fatty alcohol polyethylene glycol ethers and the dyes or rather secondary and primary intermediates are stirred into the resulting PIT emulsion or microemulsion in a cold process.
It has surprisingly been found that dyes can also be incorporated cold in PIT or microemulsions prepared using selected emulsifiers so that the production times can be significantly shortened. The PIT or microemulsions used may contain all the necessary components except for the dyes. In the most simple case, however, they may also consist solely of oil components, emulsifiers and optionally other heat-stable additives, so that more sensitive components, such as protein derivatives or perfume oils for example, can then be incorporated cold together with the dyes.
Oil Components
Suitable oil components are, for example, Guerbet alcohols based on fatty alcohols containing 6 to 18 and preferably 8 to 10 carbon atoms, esters of linear C
6-22
fatty acids with linear C
6-22
fatty alcohols, esters of branched C
6-13
carboxylic acids with linear C
6-22
fatty alcohols, esters of linear C
6-22
fatty acids with branched alcohols, more especially 2-ethyl hexanol, esters of linear and/or branched fatty acids with polyhydric alcohols (for example propylene glycol, dimer diol or trimer triol) and/or Guerbet alcohols, triglycerides based on C
6-10
fatty acids, liquid mono-/di-/triglyceride mixtures based on C
6-18
fatty acids, esters of C
6-22
fatty alcohols and/or Guerbet alcohols with aromatic carboxylic acids, more particularly benzoic acid, vegetable oils, branched primary alcohols, substituted cyclohexanes, linear C
6-22
fatty alcohol carbonates, Guerbet carbonates, esters of benzoic acid with linear and/or branched C
6-22
alcohols (for example Finsolv® TN), dialkyl ethers, ring-opening products of epoxidized fatty acid esters with polyols, silicone oils and/or aliphatic or naphthenic hydrocarbons.
Emulsifiers
Suitable emulsifiers for the production of the PIT or microemulsion are alkyl and/or alkenyl oligoglucosides, anionic surfactants, esterquats, polyolpoly-12-hydroxystearates, fatty acid esters, fatty alcohols and fatty alcohol polyethylene glycol ethers and mixtures thereof.
Alkyl and alkenyl oligoglycosides are known nonionic surfactants corresponding to formula (I):
R
1
O-[G]
p
  (I)
in which R
1
is an alkyl and/or alkenyl radical containing 4 to 22 carbon atoms, G is a sugar unit containing 5 or 6 carbon atoms and p is a number of 1 to 10. They may be obtained by the relevant methods of preparative organic chemistry. EP-A1 0 301 298 and WO 90/03977 are cited as representative of the extensive literature available on the subject. The alkyl and/or alkenyl oligoglycosides may be derived from aldoses or ketoses containing 5 or 6 carbon atoms, preferably glucose. Accordingly, the preferred alkyl and/or alkenyl oligoglycosides are alkyl and/or alkenyl oligoglucosides. The index p in general formula (I) indicates the degree of oligomerization (DP), i.e. the distribution of mono- and oligoglycosides, and is a number of 1 to 10. Whereas p in a given compound must always be an integer and, above all, may assume a value of 1 to 6, the value p for a certain alkyl oligoglycoside is an analytically determined calculated quantity which is generally a broken number. Alkyl and/or alkenyl oligoglycosides having an average degree of oligomerization p of 1.1 to 3.0 are preferably used. Alkyl and/or alkenyl oligoglycosides having a degree of oligomerization of less than 1.7 and, more particularly, between 1.2 and 1.4 are preferred from the applicational point of view. The alkyl or alkenyl radical R
1
may be derived from primary alcohols containing 4 to 11 and preferably 8 to 10 carbon atoms. Typical examples are butanol, caproic alcohol, caprylic alcohol, capric alcohol and undecyl alcohol and the technical mixtures thereof obtained, for example, in the hydrogenation of technical fatty acid methyl esters or in the hydrogenation of aldehydes from Roelen's oxosynthesis. Alkyl oligoglucosides having a chain length of C
8
to C
10
(DP=1 to 3), which are obtained as first runnings in the separation of technical C
8-18
coconut oil fatty alcohol by distillation and which may contain less than 6% by weight of C
12
alcohol as an impurity, and also alkyl oligoglucosides based on technical C
9/11
oxoalcohols (DP=1 to 3) are preferred. In addition, the alkyl or alkenyl radical R
1
may also be derived from primary alcohols containing 12 to 22 and preferably 12 to 14 carbon atoms. Typical examples are lauryl alcohol, myristyl alcohol, cetyl alcohol, palmitoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol, brassidyl alcohol and technical mixtures thereof which may be obtained as described above. Alkyl oligoglucosides based on hydrogenated C
12/14
cocoalcohol with a DP of 1 to 3 are preferred.
Typical examples of anionic surfactants are soaps, alkyl benzenesulfonates, alkanesulfonates, olefin sulfonates, alkylether sulfonates, glycerol ether sulfonates, &agr;-methyl ester sulfonates, sulfofatty acids, alkylsulfates, fatty alcohol ether sulfates, glycerol ether sulfates, hydroxy mixed ether sulfates, monoglyceride (ether) sulfates, fatty acid amide (ether) sulfates, mono- and dialkyl sulfosuccinates, mono- and dialkyl sulfosuccinamates, sulfotriglycerides, amide soaps, ether carboxylic acids and salts thereof, fatty acid isethionates, fatty acid sarcosinates, fatty acid taurides, N-acylamino acids such as, for example, acyl lactylates, acyl tartrates, acyl glutamates and acyl aspartates, alkyl oligoglucoside sulfates, protein fatty acid condensates (particularly wheat-based vegetable products) and alkyl(ether) phosphates. If the anionic surfactants contain polyglycol ether chains, they may have a conventional homolog distribution although they preferably have a narrow-range homolog distribution. Alkyl ether sulfates based on adducts of 1 to 10 mol of ethylene oxide with fatty alcohols containing 8 to 22 and preferably 12 to 18 carbon atoms in the form of their sodium or magnesium salts are preferably used.
Esterquats are generally understood to be quatemized fatty acid triethanolamine ester salts. These are known substances which may be obtained by the relevant methods of preparative organic chemistry, cf. International patent application WO 91/01295 (Henkel). According to this document, triethanolamine is partly esterified with fatty acids in the presence of hypophosphorous acid, air is passed through and the reaction product is quaternized with dimethyl sulfate or ethylene oxide. In addition, a process for the production of esterquats, in which the quatemization of triethanolamine esters is carried out in the presence of suitable dispersants, preferably fatty alcohols, is known from DE-C1 4307894 (Henkel)

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for producing hair dye products does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for producing hair dye products, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for producing hair dye products will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3002199

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.