Method for producing a supported catalyst

Catalyst – solid sorbent – or support therefor: product or process – Catalyst or precursor therefor – Metal – metal oxide or metal hydroxide

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C502S344000

Reexamination Certificate

active

06589905

ABSTRACT:

The present invention relates to a process for preparing a metal-containing supported catalyst or a supported catalyst component by impregnation of a support material.
The present invention also relates to a metal-containing supported catalyst or a metal-containing supported catalyst component obtainable by this process, a process for preparing polymers based on monomers having a C—C double bond and/or C—C triple bond, and also to the use of the metal-containing catalyst for forming carbon-carbon or carbon-heteroatom covalent bonds.
Supported catalysts are known and are widely used in many areas of industry. For example, they are used in processes for preparing low molecular weight organic chemicals and intermediates.
A further important application area for metal-containing supported catalysts is the preparation of polymers, in particular polyolefins and styrene polymers. Such polymerizations are preferably carried out in the gas phase or in suspension. The catalysts used are, for example, Ziegler catalysts or metallocene catalysts. For the purposes of the present invention, metallocene catalysts are catalysts comprising a metal complex, preferably a transition metal complex, bearing at least one ligand which in turn contains a cyclopentadienyl type structural unit. Examples of such bridged and unbridged ligands are substituted and unsubstituted cyclopentadienyl ligands, substituted and unsubstituted indenyl ligands or substituted or unsubstituted fluorenyl ligands. Metal complexes containing such ligands are known and are described, for example, in J. Macromol Sci—Rev. Macromol Chem. Phys., C34, pages 439-514 (1994).
Processes for preparing metal-containing supported catalysts are known. Efforts are made here to ensure that
a) all suport particles are laden with the transition metal,
b) there are no differences in concentration of the metal component within the loaded support particles and
c) all particles have the same concentration of metal component (mg of metal/quantity of particle).
According to the present state of knowledge, such an ideal catalyst should be well suited, for example, to polymerizing olefins since it displays, inter alia, no sintering together of the polymer particles in the reactor (lump formation) and no. overheating of the catalyst particles resulting in deactivation of the catalyst.
According to a known method, supported metallocene catalysts can, for example, be obtained by combining a metallocene-containing solution with the support material, stirring the suspension and removing the solvent under reduced pressure (WO-A 94/28034). Here, the solution volume of the impregnation solution is much greater than the pore volume of the untreated support material, so that a readily stirrable suspension is obtained. Although the metallocene component can be completely applied to the support in this method, the catalyst leads, particularly at high loadings, to difficulties in the polymerization process, for example lump formation.
In a further process for applying metallocene catalysts to supports, the metallocene impregnation solution is combined with the support material with the volume of the impregnation solution being no more than the pore volume of the support material. This gives a paste-like mass from which the solvent is removed (WO-A 94/14856). A disadvantage of this process is that the loading of the support material with sparingly soluble metallocenes is unsatisfactory because of the small amount of solvent, the productivity of the catalyst is low and the economics of the polymerization process are still unsatisfactory.
In a third method of applying the catalyst to a support, the metallocene dissolved in a good solvent is precipitated by means of a poor solvent in the presence of the support material and thus precipitated on the surface of the support material and in its pores (EP-A 0 295 312, WO 98/01481). A disadvantage of this process is that large amounts of precipitation liquids (non-solvents) are required in order to deposit the metallocene component on and in the support material. For the preparation of catalysts, the advice given for industrial purposes is to restrict the amount of non-solvent, thereby leaving valuable metallocene component in solution and therefore losing it from the supported catalyst. This method is unsatisfactory in respect of the space-time yield of catalyst and the economics.
It is an object of the present invention to provide a more economical process for preparing metal-containing supported catalysts, in particular metallocene catalysts, which gives high space-time yields. The process should be universally applicable, i.e. metallocene complexes having very different solubilities, in particular relatively sparingly soluble metallocene complexes, should still lead to a high loading in the supported catalyst. Furthermore, the catalyst, in particular the metallocene catalyst, should have the metal component distributed over the volume of the support particles in such a way that it gives high catalyst productivities (g of polymer/g of catalyst solid) together with a good polymer morphology (virtually no formation of lumps and fines). In addition, an improved catalyst, improved polymerization processes and synthetic processes for low molecular weight organic compounds using the improved catalyst are to be made available.
We have found that this object is achieved by a process for preparing a metal-containing supported catalyst or a metal-containing supported catalyst component by impregnation of a support material with an impregnation solution comprising the metal component, wherein the impregnation solution flows through the support material, a metal-containing supported catalyst obtainable by this process, a process for preparing polymers based on monomers having a C—C double bond and/or a C—C triple bond by polymerization of these monomers in the presence of a metal-containing supported catalyst obtainable by the process of the present invention and the use of a metal-containing supported catalyst obtainable by the process of the present invention for forming carbon-carbon covalent bonds or carbon-heteroatom covalent bonds.
Possible metal components for the process or catalyst of the present invention are in principle all main group or transition metal compounds which are virtually completely soluble and/or finely dispersible in organic solvents or water or mixtures thereof.
Well suited main group metal compounds are, for example, halides, sulfates, nitrates, C
1
-C
10
-alkyls, C
6
-C
20
-aryls, C
1
-C
10
-alkoxides, C
6
-C
20
-aryloxides of metals or semimetals of the 1st to 5th main groups of the Periodic Table.
Well suited transition metal compounds are, for example, halides, sulfates, nitrates, C
1
-C
10
-alkyls, C
6
-C
20
-aryls, C
1
-C
10
-alkoxides, C
6
-C
20
-aryloxides of the transition metals.
Preference is given to using organometallic compounds of transition metals, for example compounds A), as metal component.
Well suited transition metal compounds A) are, for example: transition metal complexes including a ligand of the formulae F-I to F-IV
where the transition metal is selected from among the elements Ti, Zr, Hf, Sc, V, Nb, Ta, Cr, Mo, W, Fe, Co, Ni, Pd, Pt or an element of the rare earth metals. Preference is given to compounds having nickel, iron, cobalt or palladium as central metal.
E is an element of group 15 of the Periodic Table of the Elements (5th main group), preferably N or P, particularly preferably N. The two atoms E in a molecule can be identical or different.
The radicals R
1A
to R
19A
, which can be identical or different, are the following groups:
R
1A
and R
4A
:
independently of one another, hydrocarbon
radicals or substituted hydrocarbon radicals,
preferably hydrocarbon radicals in which the
carbon atom adjacent to the element E is bound
to at least two carbon atoms;
R
2A
and R
3A
:
independently of one another, hydrogen,
hydrocarbon radicals or substituted hydrocarbon
radicals, where R
2A
and R
3A
may also together
form a ring system in which one or more
heteroatoms may also b

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for producing a supported catalyst does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for producing a supported catalyst, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for producing a supported catalyst will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3017091

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.