Method for producing a light-emitting component

Semiconductor device manufacturing: process – Making device or circuit emissive of nonelectrical signal – Compound semiconductor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S046000, C438S023000, C438S022000

Reexamination Certificate

active

06221683

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates, in general to a method for producing a light-emitting component, and in particular, to a method for producing a light-emitting component, in which, after the formation of a layer sequence including at least one active layer on the front side of a semiconductor base substrate, the base substrate is at least partially removed and the layer sequence is subsequently joined to a foreign substrate.
Light-emitting semiconductor components are produced on the basis of III-V semiconductor systems in which a light-emitting layer sequence including an active layer is deposited epitaxially on a semiconductor base substrate made of GaAs, for example. The active layer is, for example, InGaAlP with different Al concentrations. For diverse applications, it is necessary that the epitaxially applied layer sequence be removed from the base substrate (so-called epitaxial lift-off) and be fixed on a different carrier (foreign substrate) with the formation of good electrical contacts. Depending on the desired application and the fabrication technology used, the problems that have to be solved when producing individual components are different from the problems that have to be solved when producing monolithic integrated circuits. A significant part of the visible light emitted by the semiconductor chip is absorbed by the base substrate (for example GaAs), as a result of which the external efficiency of light generation becomes minimal. A substrate (for example GaP) which is transparent to the emitted light is thus preferred in order to achieve extremely high light intensities typically of 5 lm or more, and efficiencies typically of more than 10%. At the same time, there is a desire to provide good electrical coupling between the epitaxial layer sequence and the foreign substrate even when high currents are used (with a minimal total forward voltage of the LED semiconductor chip), and to provide a high yield during production. Typical applications for such individual semiconductor components are exterior lighting, lamps, and the like in motor vehicles. Furthermore, it is possible to realize optoelectronic integrated circuits by implementating extremely small III-V semiconducting epitaxial layers in silicon-based integrated circuits. In this case, the electrical coupling of the III-V semiconductor component to the silicon component is crucial.
Typical examples of applications for these are LED displays, optical information processing systems, and the like.
The fabrication, fixing and electrical contact-making of an epitaxial layer on a foreign substrate have to date been carried out essentially by two methods known as heteroepitaxy and fusion of epitaxial layers on fine substrates.
In the case of the heteroepitaxy for example of InGaAlP on GaP, high dislocation densities are inevitably produced because of the large lattice mismatches of the materials used. The dislocation densities can be reduced either by reducing the epitaxial areas using SiO2 masks, thereby enabling strain to be relieved more easily, or by conventional methods such as, for example, thermally cyclic crystal growth, introduction of interfaces and the like. Nevertheless, the high density of dislocations leads to intensification of non-radiating recombination processes and thus to reduced light emission, as well as to undefined additive voltage drops across the chip, which is unfavorable for the electrical coupling.
In the case of the fusion of epitaxial layers on foreign substrates, the absorbing GaAs base substrate is removed wet-chemically from the epitaxial layer sequence by selective undercutting, an AlN layer having been introduced beforehand. The remaining epitaxial layer sequence is applied to a transparent GaP foreign substrate under high pressure and at high temperature. The epitaxial layer sequence adheres on the transparent foreign substrate by way of the formation of van der Waals bonds.
All of the production methods discussed present the disadvantage of having undefined junctions between the two bodies to be joined, which are essentially caused because of an inhomogeneous etching away of the absorbing substrate over a few hundred micrometers. The inhomogeneous van der Waals bonds between the epitaxial layer sequence and the foreign substrate and the associated formation of oxides can lead to unfavorably high voltage drops across the semiconductor chip and can considerably reduce the yield. Thus, in the case of commercially available LED semiconductor components for high-current applications in which the InGaAlP layer sequence was joined by fusion on a GaP foreign substrate, forward voltages of 2.4 mV and above were measured at 70 mA, which greatly limits their application.
Published European Patent Application EP 0 616 376 A1 discloses a method for wafer bonding of LED layers, wherein the LED layers are produced on a growth substrate which is subsequently removed. The LED layers are joined in a planar manner to a second substrate of suitable optical properties using a conventional wafer bonding technique in order to obtain a low contact resistance or desired optical interface properties with the second substrate.
Published Japanese Patent Application JP-A 5 251 739 discloses a light-emitting semiconductor device which provides for a red GaAsP-LED and a green GaP-LED to be electrically contact-connected in order to produce a mixed color. A eutectic alloy is provided for electrically contact-connecting the two LEDs to one another.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a method for producing a light-emitting component which overcomes the hereinafore-mentioned disadvantages of the heretofore-known methods of this general type that enables an improved electrical junction between an epitaxial layer sequence and a foreign substrate. In particular it is an object to provide an improved electrical junction that can withstand high electrical currents, and to increase the yield of fabricated LED semiconductor chips by providing defined electrical junctions. The light-emitting component is preferably employed in optoelectronics and automobile electronics.
A metal film having a thickness of a few nanometers could be vapor deposited on an epitaxial layer sequence that has been separated from a base substrate. The epitaxial layer sequence could subsequently be applied to a transparent or absorbing foreign substrate that is likewise provided with a thin metal film. Alloying would then take place at the metal junction with heat treatment. The epitaxial layer sequence would adhere to the foreign substrate by way of the alloy.
With the foregoing and other objects in view there is provided, in accordance with the invention, a method for producing a light-emitting component, that includes: forming a sequence of layers on a base substrate in which the sequence of layers includes at least one active layer; at least partially removing the base substrate from the sequence of layers; patterning a metallic contact layer, defining a first contact layer, on a surface of the sequence of layers; patterning a metallic contact layer, defining a second contact layer, on a surface of a foreign substrate; providing at least one solder layer between the first contact layer and the second contact layer; and joining the sequence of layers to the foreign substrate only by eutectically bonding the first contact layer to the second contact layer.
In accordance with an added feature of the invention, the base substrate is preferably removed by wet-chemical etching in an etchant which is selective for the material of the base substrate.
In accordance with an additional feature of the invention, the wet-chemical etching of the base substrate is preceded by mechanical thinning of the base substrate. This makes it possible to achieve a highly homogeneous separation of the base substrate from the layer sequence containing the active layer.
Compared with the methods used heretofore, the method according to the invention principally has the advantage that

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for producing a light-emitting component does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for producing a light-emitting component, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for producing a light-emitting component will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2492054

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.