Method for producing 2-(4-methyl-3-pentenyl) anthraquinone

Organic compounds -- part of the class 532-570 series – Organic compounds – Polycyclo ring system containing anthracene configured ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C552S268000, C552S269000, C552S270000

Reexamination Certificate

active

06399795

ABSTRACT:

INTRODUCTION AND BACKGROUND
The present invention relates to a method for obtaining 2-(4-methyl-3-pentenyl)anthraquinone, which is called 2-isohexenylanthraquinone (IHEAQ) herein, by oxidation of the adduct of naphthoquinone and myrcene formed by a Diels-Alder reaction.
Anthraquinones can be prepared in accordance with Houben-Weyl, Methods of Organic Chemistry, 4
th
edition, Volume VII/3c, Georg Thieme Verlag, Stuttgart, 1979, pp. 23-31, and Volume VII/2b, pp. 1765 ff., by thermally reacting a diene with naphthoquinone in a first step. This Diels-Alder addition is usually carried out in a solvent, but it can also take place directly by heating the components. However, it can be managed by using catalyst like Lewis acids such as boron trifluoride.
In a next step, the Diels-Alder adduct is converted to anthraquinone in the presence of alkali metal hydroxides and air via the intermediate step of the 1,4-dihydroanthraquinone compound. According to Japanese published patent applications JP-A 58-180452 and JP-A 59-51235, 2-isohexenylanthraquinone can be prepared from myrcene and naphthoquinone. In this method, the Diels-Alder adduct formed from these substances is oxidized with air in aqueous ethanol in the presence of an alkali hydroxide; the resulting yellow 2-isohexenylanthraquinone precipitates from the reaction mixture and can be isolated from it and recrystallized in a known way.
The known method for producing 2-isohexenylanthraquinone (IHEAQ) has the disadvantage that the IHEAQ formed during oxidation precipitates from the solution before the end of complete oxidation with air. Because of this, especially when the process is carried out on a larger scale, it becomes difficult to mix the reaction mixture. Also, the delivery of air or oxygen is hindered and thus the reaction time up to quantitative conversion is considerably increased. The mixing problem can be alleviated by using a larger amount of solvent, but this reduces the space-time yield. Another disadvantage of the previously known method is that the precipitated IHEAQ includes the unreacted educt, intermediate products and alkali hydroxide, which leads to a product of reduced purity. In addition, the included components can lead to problems in the further use of the IHEAQ, for example, when it is used as a reaction carrier in the anthraquinone method for producing hydrogen peroxide; in order to avoid these problems, up to now the IHEAQ has had to be recrystallized and washed with an acid at high expense.
It is therefore an object of this invention to produce 2-isohexenylanthraquinone in a way that overcomes the problems of the prior art. The improved method of the present invention is intended on the one hand to lead to a higher space-time yield, and on the other to produce a product of higher purity.
SUMMARY OF THE INVENTION
The above and other objects of the present invention can be achieved by a method for producing 2-(4-methyl-3-pentenyl)anthraquinone (IHEAQ) that includes a Diels-Alder addition, where naphtho-1,4-quinone is reacted with myrcene [7-methyl-3-methylene-1,6-octadiene], and an oxidation of the resulting Diels-Alder adduct [2-(4-methyl-3-pentenyl)-1,4,11,12-tetrahydroanthraquinone] with an oxygen-containing gas in an organic solvent in the presence of a base, which is characterized by the fact that the oxidation is carried out in a solvent mixture containing a polar and a nonpolar organic solvent in the presence of a strong inorganic and an organic base.
As the examples and comparison examples illustrate, the conversion in the oxidation of the Diels-Alder adduct 2-(4-methyl-3-pentenyl)-1,4,11,12-tetrahydroanthraquinone to 2-isohexenylanthraquinone can be increased by using a combination of a strong inorganic base, such as sodium hydroxide, and an organic amine. The increase of conversion brought about by the combination of bases is surprisingly achieved independently from the solvent or solvent mixture. A particularly high increase of conversion can be brought about by using, in addition to the said combination of bases, a combination of solvents that contains both a polar and a nonpolar solvent. This particularly preferred embodiment, oxidation in the presence of the said combination of bases and combination of solvents, results in no precipitation occurring during the oxidation, the conversion being accelerated, and no undesirable byproducts being contained in the 2-isohexenylanthraquinone.
DETAILED DESCRIPTION OF THE INVENTION
The sources of the problems that are present in the prior art and the overcoming of them in accordance with the invention can be explained as follows:
In the reaction of the Diels-Alder adduct, hydroquinones or their salts arise as intermediate steps to IHEAQ. These substances are quite readily soluble in polar solvents, but poorly soluble in nonpolar solvents. On the other hand, the Diels-Alder adduct and the end product IHEAQ are more soluble in nonpolar solvents than in polar solvents. Strong inorganic bases are reasonably priced, but not very effective because of their low solubility in nonpolar solvents. Organic bases are more expensive, but they are readily soluble in polar as well as nonpolar solvents. The use of a nonwater-miscible nonpolar solvent simplifies the subsequent processing steps, such as separation of the bases by washing with an acid.
Aliphatic, cycloaliphatic, aromatic, and aromatic-aliphatic hydrocarbons are especially suitable as nonpolar solvents. Among the aliphatic hydrocarbons, branched and unbranched hydrocarbons with 6-12 carbon atoms, especially 6-10 carbon atoms, thus hexane, heptane, octane and decane and mixtures of such hydrocarbons, are especially suitable. Among the cycloaliphatic hydrocarbons, cyclohexane and terpene hydrocarbons should be particularly emphasized. Among the aromatics and alkyl-substituted aromatic compounds, benzene and methylated benzenes like toluene, xylenes, trimethylbenzenes, tetramethylbenzenes and mixtures of such mothylated benzenes are particularly suitable; instead of or in addition to methyl groups, the benzene ring can also have other lower alkyl groups like ethyl, n-propyl and isopropyl. Mixtures of alkylated, especially methylated, benzenes are commercially available.
The following are possibilities as polar solvents: alcohols, in particular ethanol, n-propanol, isopropanol, n-butanol, isobutanol, octanol and diisobutylcarbinol; esters, in particular acetates and propionates, for example ethyl acetate and methyl cyclohexyl acetate, alkyl phosphates like tris-(2-ethylhexyl) phosphate; amides, N-alkylamides, N-alkylpyrrolidones, N,N-dialkylcarbamates, N-alkylcaprolactams as well as alkylated ureas, especially tetraalkylated ureas. In the case of the said N-alkylated compounds, alkyl preferably stands for a linear alkyl group with 1-8 C atoms, for example N-methylcaprolactam, N-hexylcaprolactam, N-octylcaprolactam, N-methylpyrrolidone, tetramethyl urea and tetrabutyl urea.
The solvent mixture that is to be used in the preferred embodiment can contain one or more polar and one or more nonpolar solvents. The ratio of the amounts of nonpolar solvents to polar solvents can vary in a wide range; the weight ratio is in general in the range from 5 to 1 up to 1 to 5. Preferably, the weight fraction of nonpolar solvents is higher than that of the polar solvents; according to one particularly preferred embodiment, the weight ratio of polar to nonpolar solvents lies in the range from 1 to 2 up to 1 to 4.
Preferably one or more bases from among lithium, sodium and potassium hydroxides or aqueous solutions of these hydroxides are used as strong inorganic bases.
The bases to be used are preferably nitrogen-containing bases. In particular, primary, secondary and tertiary aliphatic and cycloaliphatic amines can be used, where these amines can be mono-, di- and triamines. Preferably, the amines contain 2-10 carbon atoms. Examples of these said amines are ethylamine, diethylamine, triethylamine, mono-, di- and tripropyl amine or mono-, di- and tributylamine, ethylenediamine, diethylenetriamine, morpholine, N

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for producing 2-(4-methyl-3-pentenyl) anthraquinone does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for producing 2-(4-methyl-3-pentenyl) anthraquinone, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for producing 2-(4-methyl-3-pentenyl) anthraquinone will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2943523

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.